A Lefschetz fixed point formula for singular arithmetic schemes with smooth generic fibres
Documenta mathematica, Tome 15 (2010), pp. 1049-1108.
Voir la notice de l'article dans Electronic Library of Mathematics
Summary: In this article, we consider singular equivariant arithmetic schemes whose generic fibres are smooth. For such schemes, we prove a relative fixed point formula of Lefschetz type in the context of Arakelov geometry. This formula is an analog, in the arithmetic case, of the Lefschetz formula proved by R. W. Thomason in [31]. In particular, our result implies a fixed point formula which was conjectured by V. Maillot and D. Rössler in [25].
Classification :
14C40, 14G40, 14L30, 58J20, 58J52
Mots-clés : fixed point formula, singular arithmetic scheme, Arakelov geometry
Mots-clés : fixed point formula, singular arithmetic scheme, Arakelov geometry
@article{DOCMA_2010__15__a0, author = {Tang, Shun}, title = {A {Lefschetz} fixed point formula for singular arithmetic schemes with smooth generic fibres}, journal = {Documenta mathematica}, pages = {1049--1108}, publisher = {mathdoc}, volume = {15}, year = {2010}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/DOCMA_2010__15__a0/} }
Tang, Shun. A Lefschetz fixed point formula for singular arithmetic schemes with smooth generic fibres. Documenta mathematica, Tome 15 (2010), pp. 1049-1108. https://geodesic-test.mathdoc.fr/item/DOCMA_2010__15__a0/