Global approximations for the γ-order Lognormal distribution
Discussiones Mathematicae Probability and Statistics, Tome 33 (2013) no. 1-2, p. 99.

Voir la notice de l'article dans European Digital Mathematics Library

A generalized form of the usual Lognormal distribution, denoted with γ , is introduced through the γ-order Normal distribution γ , with its p.d.f. defined into (0,+∞). The study of the c.d.f. of γ is focused on a heuristic method that provides global approximations with two anchor points, at zero and at infinity. Also evaluations are provided while certain bounds are obtained.
Classification : 62H10, 62E15, 65C50
Mots-clés : cumulative distribution function, γ-order Lognormal distribution, global Padé approximation, -order lognormal distribution
@article{DMPS_2013__33_1-2_271047,
     author = {Thomas L. Toulias},
     title = {Global approximations for the \ensuremath{\gamma}-order {Lognormal} distribution},
     journal = {Discussiones Mathematicae Probability and Statistics},
     pages = {99},
     publisher = {mathdoc},
     volume = {33},
     number = {1-2},
     year = {2013},
     zbl = {1315.60024},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/DMPS_2013__33_1-2_271047/}
}
TY  - JOUR
AU  - Thomas L. Toulias
TI  - Global approximations for the γ-order Lognormal distribution
JO  - Discussiones Mathematicae Probability and Statistics
PY  - 2013
SP  - 99
VL  - 33
IS  - 1-2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/DMPS_2013__33_1-2_271047/
LA  - en
ID  - DMPS_2013__33_1-2_271047
ER  - 
%0 Journal Article
%A Thomas L. Toulias
%T Global approximations for the γ-order Lognormal distribution
%J Discussiones Mathematicae Probability and Statistics
%D 2013
%P 99
%V 33
%N 1-2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/DMPS_2013__33_1-2_271047/
%G en
%F DMPS_2013__33_1-2_271047
Thomas L. Toulias. Global approximations for the γ-order Lognormal distribution. Discussiones Mathematicae Probability and Statistics, Tome 33 (2013) no. 1-2, p. 99. https://geodesic-test.mathdoc.fr/item/DMPS_2013__33_1-2_271047/