Voir la notice de l'article provenant de la source Library of Science
@article{DMPS_2013_33_1-2_a8, author = {Cameron, Ian and Rogers, Adam and Loly, Peter}, title = {Signatura of magic and {Latin} integer squares: isentropic clans and indexing}, journal = {Discussiones Mathematicae. Probability and Statistics}, pages = {121--149}, publisher = {mathdoc}, volume = {33}, number = {1-2}, year = {2013}, zbl = {1325.05042}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/DMPS_2013_33_1-2_a8/} }
TY - JOUR AU - Cameron, Ian AU - Rogers, Adam AU - Loly, Peter TI - Signatura of magic and Latin integer squares: isentropic clans and indexing JO - Discussiones Mathematicae. Probability and Statistics PY - 2013 SP - 121 EP - 149 VL - 33 IS - 1-2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/DMPS_2013_33_1-2_a8/ LA - en ID - DMPS_2013_33_1-2_a8 ER -
%0 Journal Article %A Cameron, Ian %A Rogers, Adam %A Loly, Peter %T Signatura of magic and Latin integer squares: isentropic clans and indexing %J Discussiones Mathematicae. Probability and Statistics %D 2013 %P 121-149 %V 33 %N 1-2 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/DMPS_2013_33_1-2_a8/ %G en %F DMPS_2013_33_1-2_a8
Cameron, Ian; Rogers, Adam; Loly, Peter. Signatura of magic and Latin integer squares: isentropic clans and indexing. Discussiones Mathematicae. Probability and Statistics, Tome 33 (2013) no. 1-2, pp. 121-149. https://geodesic-test.mathdoc.fr/item/DMPS_2013_33_1-2_a8/
[1] W.S. Andrews, Magic Squares and Cubes, 1st edition, The Open Court Publishing Company, New York; 1914 2nd edition with corrections and added chapters, 1908. See review by Miller [36] below.
[2] R.A. Bailey, P.J. Cameron and R.C. Connelly, Sudoku, Gerechte Designs, Resolutions, Affine Space, Spreads, Reguli, and Hamming Codes, Am. Math. Monthly 115 (2008) 383-404.
[3] W.S. Benson and O. Jacoby, New Recreations with Magic Squares, Dover Publications (New York, 1976).
[4] S.S. Block and S.A. Tavares, Before Sudoku - The World of Magic Squares (Oxford, 2009).
[5] C. Boyer, Magic squares of squares, 2012. http://www.multimagie.com/English/SquaresOfSquares.htm
[6] C. Bradgon, Frozen Fountain: Being Essays on Architecture and the Art of Design in Space, 1932 Alfred A. Knopf (New York, 1924).
[7] R. Brualdi, Introductory Combinatorics, 5th edition (Pearson, 2010).
[8] I. Cameron and P. Loly, Eigenvalues of an Algebraic Family of Compound Magic Squares of Order $n=3^{l}$, l=2,3,..., and Construction and Enumeration of their Fundamental Numerical Forms, Canadian Mathematical Society (Windsor, Ontario, 2009).
[9] I. Cameron, R. Rogers and P. Loly, Signatura of Integer Squares: Another Chapter in the Scientific Studies of Magical Squares, LINSTAT 2012, Będlewo, Poland, 16-20 July 2012. http://www.physics.umanitoba.ca/~icamern/Poland2012/
[10] W. Chan and P.D. Loly, Iterative compounding of square matrices to generate large-order magic squares, Mathematics Today 38 (2002), 113-118. (The Institute of Mathematics and its Applications, Southend-on-Sea, UK).
[11] R. Descombes, Les Carrés Magiques: Histoire, théorie et technique du carré magique, de l'Antiquité aux recherches actuelles, $2^{e}$ (Vuibert, 2000).
[12] J.H. Dinitz, P.R.J. Östergaard and D.R. Stinson, Packing Costas Arrays, arXiv: 1102.1332v1[math.CO] 7 Feb 2011.
[13] S.W. Drury, There are no magic squares of rank 2, 2007, personal communication.
[14] H.E. Dudeney, The magic square of sixteen, The Queen: The Lady's Newspaper and Court Chronicle, January 15, 125-126. See also his 1917 Amusements in Mathematics, p. 119-121, reprinted without change, 1958, 1970 Dover Publications (New York, 1910).
[15] C. Eggermont, Multimagic Squares, Thesis, Department of Mathematics, Radbout University of Nijmegen, 2007.
[16] A. van den Essen, Magische Vierkanten: Van Lo-Shu tot sudoku, De wonderbaarlijke geschiedenis, Veen Magazines (Diemen, 2006).
[17] L. Euler, Recherches sur une nouvelle espèce de quarrés magiques, 1923 reprinted in Opera Omnia Series I volume VII (Teubner, Leipzig and Berlin, 1782), 291-392.
[18] R.P. Feyman, Lectures on Computation, edited by T. Hey and R.W. Allen (Westview, 1996).
[19] L.S. Frierson, A Mathematical Study of Magic Squares: A New Analysis, The Monist, XVII 272-293 (in Criticism and Discussion, signed L.S. Frierson, Frierson, LA), 1907 [Edited version in [1], pp. 129-145, signed L.S.F]
[20] H.G. Funkhouser, A short account of the history of symmetric functions of roots of equations, Am. Math. Monthly 37 (1930), 357-365. doi: 10.2307/2299273
[21] F. Gaspalou, 2010. http://www.gaspalou.fr/magic-squares/, and personal communication.
[22] A. Girard, Invention nouvelle en l'algèbre, 1629. http://gallica.bnf.fr/ark:/12148/bpt6k5822034w.r=albert+girard+invention+nouvelle.langEN
[23] H.D. Heinz and J.R. Hendricks, Magic Square Lexicon: Illustrated, 2000 and H.D.H. 1999-2009 http://www.magic-squares.net/; Dudeney patterns: http://www.magic-squares.net/order4list.htm#Introduction
[24] R.A. Horn and C.A. Johnson, Topics in Matrix Analysis (Cambridge University Press, 1991). doi: 10.1017/CBO9780511840371
[25] S. Kirkland and M. Neumann, Group inverses of M-matrices with associated nonnegative matrices having few eigenvalues, Linear Algebra Appl. 220 (1995), 181-213. doi: 10.1016/0024-3795(94)00301-S
[26] C. Knecht, Topographical model, 2011 knechtmagicsquare.paulscomputing.com
[27] K.-W. Lih, A Remarkable Euler Square before Euler, Mathematics Magazine, June 2010, 163-167. doi: 10.4169/002557010X494805
[28] P.D. Loly, The Invariance of the Moment of Inertia of Magic Squares, The Mathematical Gazette 88 (2004), 151-153.
[29] P.D. Loly and M.J. Steeds, A new class of pandiagonal squares, International Journal of Mathematical Education in Science and Technology 36 (2005), 375-388.
[30] P. Loly, Franklin Squares - A Chapter in the Scientific Studies of Magical Squares, (version of a poster talk at NKS2006 (New Kind of Science), Washington, D.C., June 2006), Complex Systems 17 (2007), 143-161.
[31] P.D. Loly and D.G. Schindel, 'A Simplified Demonstration of Counting the 880 Fourth Order Magic Squares Using Mathematica ', 2007, New Kind of Science (NKS2006) Wolfram Science Conference, 2006. www.wolframscience.com/conference/2006/presentations/materials/loly.nb
[32] P.D. Loly, Two small theorems for square matrices rotated a quarter turn, Western Canada Linear Algebra Meeting (WCLAM2008), Winnipeg, 2008.
[33] P. Loly, I. Cameron, W. Trump and D. Schindel, Magic square spectra, Linear Algebra and Its Applications, 430 (2009), 2659-2680. doi: 10.1016/j.laa.2008.10.032
[34] B.D. McKay and I.M. Wanless, On the number of latin squares, Ann. Combin. 9 (2005), 335-344. http://cs.anu.edu.au/~bdm/data/latin.html. doi: 10.1007/s00026-005-0261-7
[35] G.A. Miller, Historical Introduction to Mathematical Literature, The MacMillan Company, 1916, 1927.
[36] G.A. Miller, Review of [1], Bull. Amer. Math. Soc. 16 (1909), 85-87. doi: 10.1090/S0002-9904-1909-01866-X
[37] C. Moler, MATLAB's magical mystery tour, The MathWorks Newsletter 7 (1993), 8-9.
[38] D. Morris, Best Franklin Squares, 2012. http://bestfranklinsquares.com/
[39] P.K. Newton and S.A. DeSalvo, The Shannon entropy of Sudoku matrices, Proc. R. Soc. A 466 (2010), 1957-1975.
[40] Dame K. Ollerenshaw and Sir H. Bondi, Magic squares of order four, Philosophical Transactions of the Royal Society of London, A 306 (1982), 443-532.
[41] Dame K. Ollerenshaw, On `most perfect' or `complete' 8x8 pandiagonal magic squares, Proc. R. Soc. Lond. A 407 (1986), 259-281. doi: 10.1098/rspa.1986.0096
[42] K. Ollerenshaw and D.S. Brée, Most-perfect pandiagonal magic squares: their construction and enumeration, The Institute of Mathematics and its Applications, Southend-on-Sea, UK, 1998.
[43] K. Ollerenshaw, Constructing pandiagonal magic squares of arbitrarily large size, Mathematics Today, Parts 1 and 2, Feb. 23-29; Part 3, Apr. 66-69, (The Institute of Mathematics and its Applications, Southend-on-Sea, UK), 2006.
[44] P.C. Pasles, Benjamin Franklin's Numbers: An Unsung Mathematical Odyssey (Princeton, 2008).
[45] K. Pinn and C. Wieczerkowski, Number of magic squares from parallel tempering Monte Carlo, International Journal of Modern Physics C 9 (1998), 541-546.
[46] R. Rao, Computing a rosetta stone for the indus script, TED talk: http://www.ted.com/talks/rajesh_rao_computing_a_rosetta_stone_for_the_indus_script.html; Rao, R. et al. 2009, Entropic evidence for linguistic structure in the indus script, Science 324 (2009), 1165.
[47] A. Rogers, 2004; A. Rogers, P. Loly and G.P.H. Styan, 2008, Sums of Kronecker Products for Compound Magic Squares: Eigenproperties, Western Canada Linear Algebra Meeting (WCLAM2008), Winnipeg; A. Rogers, P. Loly and Styan 2012, preprint.
[48] O. Roy and M. Vetterli, The Effective Rank: A Measure of Effective Dimensionality, EUSIPCO (EURASIP), Poznań, 2007.
[49] W.A. Sammons, Magic squares and groups, IMA Bulletin 27 (August) (1991), 161-172.
[50] D.G. Schindel, M. Rempel and P.D. Loly, Enumerating the bent diagonal squares of Dr Benjamin Franklin FRS, Proceedings of the Royal Society A: Physical, Mathematical and Engineering 462 (2006), 2271-2279. The electronic supplementary material of the 4320 set is available at: rspa.royalsocietypublishing.org/content/suppl/2009/02/11/462.2072.2271.DC1/rspa20061684supp2.txt
[51] J. Sesiano, Les Carrés Magiques dans les Pays Islamic, Presses Poltechniques et Universitaires Romandes, 2004.
[52] R. Schroeppel, The order 5 magic squares, Written by Michael Beeler with assistance from Schroeppel - see M. Gardner's 1976 column on Mathematical Games, Scientific American 234 (1971), 118-123.
[53] N.J.A. Sloane, The On-Line Encyclopedia of Integer Sequences, 2012. http://www.research.att.com/~njas/sequences/
[54] G.P.H. Styan, An illustrated introduction to Caïssan squares: the magic of chess, Acta et Commentationes Universitatis Tartuensis de Mathematica 16 (2012), 97-143. Online at www.math.ut.ee/acta/
[55] M. Suzuki, Archived web pages about magic squares, especially a database and algorithms: http://mathforum.org/te/exchange/hosted/suzuki/MagicSquare.html and mathforum.org/te/exchange/hosted/suzuki/MagicSquare.wasan.html
[56] F.J. Swetz, Legacy of the Luoshu - The 4000 Year Search for the Meaning of the Magic Square of Order Three (Chicago, Open Court, 2002).
[57] G.G. Szpiro, A Mathematical Medley: Fifty Easy Pieces on Mathematics, AMS, 2010. See chapters 30 and 31.
[58] A.C. Thompson, Odd magic powers, Am. Math. Monthly 101 (1994), 339-342. doi: 10.2307/2975626
[59] D. Trenkler and G. Trenkler, Magic Squares, Melancholy and The Moore-Penrose Inverse, IMAGE 27, October 2001, 3-10.
[60] W.H. Thompson, On magic squares, The Quarterly Journal of Pure and Applied Mathematics X (1869), 186-202 [XI, 57, 123, 213]
[61] W. Trump, Notes on Magic Squares and Cubes, 2003. http://www.trump.de/magic-squares/ and Estimate of the number of magic squares of order 6, http://www.trump.de/magic-squares/normal-6/index.html
[62] E.W. Weisstein, Latin Square, From MathWorld - A Wolfram Web Resource. http://mathworld.wolfram.com/LatinSquare.html