Voir la notice de l'article provenant de la source Library of Science
@article{DMPS_2013_33_1-2_a7, author = {Trenkler, G\"otz and Trenkler, Dietrich}, title = {On melancholic magic squares}, journal = {Discussiones Mathematicae. Probability and Statistics}, pages = {111--119}, publisher = {mathdoc}, volume = {33}, number = {1-2}, year = {2013}, zbl = {1314.00011}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/DMPS_2013_33_1-2_a7/} }
TY - JOUR AU - Trenkler, Götz AU - Trenkler, Dietrich TI - On melancholic magic squares JO - Discussiones Mathematicae. Probability and Statistics PY - 2013 SP - 111 EP - 119 VL - 33 IS - 1-2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/DMPS_2013_33_1-2_a7/ LA - en ID - DMPS_2013_33_1-2_a7 ER -
Trenkler, Götz; Trenkler, Dietrich. On melancholic magic squares. Discussiones Mathematicae. Probability and Statistics, Tome 33 (2013) no. 1-2, pp. 111-119. https://geodesic-test.mathdoc.fr/item/DMPS_2013_33_1-2_a7/
[1] W.S. Andrews, Magic Squares and Cubes (Dover, New York, 1960).
[2] A. Ben-Israel and T.N.E. Greville, Generalized Inverses: Theory and Applications (Springer, 2nd edition, 2003).
[3] H.D. Heinz and J.R. Hendricks, Magic Square Lexicon: Illustrated, HDH, Surrey, BC, 2000.
[4] G.P.H. Styan, G. Trenkler and K.L. Chu, An Illustrated Introduction to Yantra Magic Squares and Agrippa-type Magic Squares, Lectures on Matrix and Graph Methods, Ed. by R.B. Bapat, S. Kirkland, U.M. Prasad and S. Puntanen (Manipal University Press, 2012), 159-220.
[5] D. Trenkler and G. Trenkler, Magic squares, melancholy and the Moore-Penrose inverse, Image 27 (2001), 3-9.