Global approximations for the γ-order Lognormal distribution
Discussiones Mathematicae. Probability and Statistics, Tome 33 (2013) no. 1-2, pp. 99-110.

Voir la notice de l'article dans Library of Science

A generalized form of the usual Lognormal distribution, denoted with _γ, is introduced through the γ-order Normal distribution _γ, with its p.d.f. defined into (0,+∞). The study of the c.d.f. of _γ is focused on a heuristic method that provides global approximations with two anchor points, at zero and at infinity. Also evaluations are provided while certain bounds are obtained.
Mots-clés : cumulative distribution function, γ-order Lognormal distribution, global Padé approximation
@article{DMPS_2013_33_1-2_a6,
     author = {Toulias, Thomas},
     title = {Global approximations for the \ensuremath{\gamma}-order {Lognormal} distribution},
     journal = {Discussiones Mathematicae. Probability and Statistics},
     pages = {99--110},
     publisher = {mathdoc},
     volume = {33},
     number = {1-2},
     year = {2013},
     zbl = {1315.60024},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/DMPS_2013_33_1-2_a6/}
}
TY  - JOUR
AU  - Toulias, Thomas
TI  - Global approximations for the γ-order Lognormal distribution
JO  - Discussiones Mathematicae. Probability and Statistics
PY  - 2013
SP  - 99
EP  - 110
VL  - 33
IS  - 1-2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/DMPS_2013_33_1-2_a6/
LA  - en
ID  - DMPS_2013_33_1-2_a6
ER  - 
%0 Journal Article
%A Toulias, Thomas
%T Global approximations for the γ-order Lognormal distribution
%J Discussiones Mathematicae. Probability and Statistics
%D 2013
%P 99-110
%V 33
%N 1-2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/DMPS_2013_33_1-2_a6/
%G en
%F DMPS_2013_33_1-2_a6
Toulias, Thomas. Global approximations for the γ-order Lognormal distribution. Discussiones Mathematicae. Probability and Statistics, Tome 33 (2013) no. 1-2, pp. 99-110. https://geodesic-test.mathdoc.fr/item/DMPS_2013_33_1-2_a6/

[1] H. Alzer, On some inequalities for the incomplete gamma function, Mathematics of Computation 66 (1997) 771-778. doi: 10.1090/S0025-5718-97-00814-4.

[2] F. Bernardeau and L. Kofman, Properties of the cosmological density distribution function, Monthly Notices of the Royal Astrophys. J. 443 (1995) 479-498.

[3] P. Blasi, S. Burles and A.V. Olinto, Cosmological magnetic field limits in an inhomogeneous Universe, The Astrophysical Journal Letters 514 (1999) L79-L82. doi: 10.1086/311958.

[4] E.L. Crow and K. Shimizu, Lognormal Distributions - Theory and Applications (M. Dekker, New York Basel, 1998).

[5] J. Gathen and J. Gerhard, Modern Computer Algebra (Cambridge University Press, 1993).

[6] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products (Elsevier, 2007).

[7] C.P. Kitsos and N.K. Tavoularis, Logarithmic Sobolev inequalities for information measures, IEEE Trans. Inform. Theory 55 (2009) 2554-2561. doi: 10.1109/TIT.2009.2018179.

[8] C.P. Kitsos and T.L. Toulias, New information measures for the generalized normal distribution, Information 1 (2010) 13-27. doi: 10.3390/info1010013.

[9] C.P. Kitsos, T.L. Toulias and C.P. Trandafir, On the multivariate γ-ordered normal distribution, Far East J. of Theoretical Statistics 38 (2012) 49-73.

[10] T.J. Kozubowski and K. Podgórski, Asymmetric Laplace laws and modeling financial data, Math. Comput. Modelling 34 (2001) 1003-1021. doi: 10.1016/S0895-7177(01)00114-5.

[11] T.J. Kozubowski and K. Podgórski, Asymmetric Laplace distributions, Math. Sci. 25 (2000) 37-46.

[12] C.G. Small, Expansions and Asymptotics for Statistics (Chapman Hall, 2010). doi: 10.1201/9781420011029.

[13] T.L. Toulias and C.P. Kitsos, On the generalized Lognormal distribution, J. Prob. and Stat. (2013) 1-16. doi: 10.1155/2013/432642.