@article{DMPS_2013_33_1-2_a6, author = {Toulias, Thomas}, title = {Global approximations for the \ensuremath{\gamma}-order {Lognormal} distribution}, journal = {Discussiones Mathematicae. Probability and Statistics}, pages = {99--110}, publisher = {mathdoc}, volume = {33}, number = {1-2}, year = {2013}, zbl = {1315.60024}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/DMPS_2013_33_1-2_a6/} }
TY - JOUR AU - Toulias, Thomas TI - Global approximations for the γ-order Lognormal distribution JO - Discussiones Mathematicae. Probability and Statistics PY - 2013 SP - 99 EP - 110 VL - 33 IS - 1-2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/DMPS_2013_33_1-2_a6/ LA - en ID - DMPS_2013_33_1-2_a6 ER -
Toulias, Thomas. Global approximations for the γ-order Lognormal distribution. Discussiones Mathematicae. Probability and Statistics, Tome 33 (2013) no. 1-2, pp. 99-110. https://geodesic-test.mathdoc.fr/item/DMPS_2013_33_1-2_a6/
[1] H. Alzer, On some inequalities for the incomplete gamma function, Mathematics of Computation 66 (1997) 771-778. doi: 10.1090/S0025-5718-97-00814-4.
[2] F. Bernardeau and L. Kofman, Properties of the cosmological density distribution function, Monthly Notices of the Royal Astrophys. J. 443 (1995) 479-498.
[3] P. Blasi, S. Burles and A.V. Olinto, Cosmological magnetic field limits in an inhomogeneous Universe, The Astrophysical Journal Letters 514 (1999) L79-L82. doi: 10.1086/311958.
[4] E.L. Crow and K. Shimizu, Lognormal Distributions - Theory and Applications (M. Dekker, New York Basel, 1998).
[5] J. Gathen and J. Gerhard, Modern Computer Algebra (Cambridge University Press, 1993).
[6] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products (Elsevier, 2007).
[7] C.P. Kitsos and N.K. Tavoularis, Logarithmic Sobolev inequalities for information measures, IEEE Trans. Inform. Theory 55 (2009) 2554-2561. doi: 10.1109/TIT.2009.2018179.
[8] C.P. Kitsos and T.L. Toulias, New information measures for the generalized normal distribution, Information 1 (2010) 13-27. doi: 10.3390/info1010013.
[9] C.P. Kitsos, T.L. Toulias and C.P. Trandafir, On the multivariate γ-ordered normal distribution, Far East J. of Theoretical Statistics 38 (2012) 49-73.
[10] T.J. Kozubowski and K. Podgórski, Asymmetric Laplace laws and modeling financial data, Math. Comput. Modelling 34 (2001) 1003-1021. doi: 10.1016/S0895-7177(01)00114-5.
[11] T.J. Kozubowski and K. Podgórski, Asymmetric Laplace distributions, Math. Sci. 25 (2000) 37-46.
[12] C.G. Small, Expansions and Asymptotics for Statistics (Chapman Hall, 2010). doi: 10.1201/9781420011029.
[13] T.L. Toulias and C.P. Kitsos, On the generalized Lognormal distribution, J. Prob. and Stat. (2013) 1-16. doi: 10.1155/2013/432642.