Voir la notice de l'article dans The Library of Science
@article{DMPS_2013_33_1-2_a5, author = {Martins, Jo\~ao and Felgueiras, Miguel and Santos, Rui}, title = {Meta-analysis techniques applied in prevalence rate estimation}, journal = {Discussiones Mathematicae Probability and Statistics}, publisher = {mathdoc}, volume = {33}, number = {1-2}, year = {2013}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/DMPS_2013_33_1-2_a5/} }
TY - JOUR AU - Martins, João AU - Felgueiras, Miguel AU - Santos, Rui TI - Meta-analysis techniques applied in prevalence rate estimation JO - Discussiones Mathematicae Probability and Statistics PY - 2013 VL - 33 IS - 1-2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/DMPS_2013_33_1-2_a5/ LA - en ID - DMPS_2013_33_1-2_a5 ER -
%0 Journal Article %A Martins, João %A Felgueiras, Miguel %A Santos, Rui %T Meta-analysis techniques applied in prevalence rate estimation %J Discussiones Mathematicae Probability and Statistics %D 2013 %V 33 %N 1-2 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/DMPS_2013_33_1-2_a5/ %G en %F DMPS_2013_33_1-2_a5
Martins, João; Felgueiras, Miguel; Santos, Rui. Meta-analysis techniques applied in prevalence rate estimation. Discussiones Mathematicae Probability and Statistics, Tome 33 (2013) no. 1-2. https://geodesic-test.mathdoc.fr/item/DMPS_2013_33_1-2_a5/
F. Anscombe, The transformation of poisson, binomial and negative-binomial data, Biometrika 35 (1948) 246-254.
T. Berger, J.W. Mandell and P. Subrahmanya, Maximally efficient two-stage screening, Biometrics 56 (2000) 833-840. doi: 10.1111/j.0006-341X.2000.00833.x.
B.J. Biggerstaff and R.L. Tweedie, Incorporating Variability in Estimates of Heterogeneity in the Random Effects Model in Meta-analysis, Stat. Med. 16 (1997) 753-768. doi: 10.1002/(SICI)1097-0258(19970415)16:7753::AID-SIM494>3.0.CO;2-G.
C.R. Bilder, B. Zang, F. Schaarschmidt and J.M. Tebbs, binGroup: a package for group testing, The R Journal 2 (2010) 56-60.
C.L. Chen and W.H. Swallow, Using group testing to estimate a proportion, and to test the binomial model, Biometrics 46 (1990) 1035-1046. doi: 10.2307/2532446.
W.G. Cochran, The combination of estimates from different experiments, Biometrics 10 (1954) 101-129. doi: 10.2307/3001666.
R. DerSimonian and N. Laird, Meta-analysis in clinical trials, Control. Clin. Trials 7 (1986) 177-178. doi: 10.1016/0197-2456(86)90046-2.
R. Dorfman, The detection of defective members in large populations, Ann. Math. Statistics 14 (1943) 436-440. doi: 10.1214/aoms/1177731363.
H.M. Finuncan, The blood testing problem, Appl. Stat. 13 (1964) 43-50. doi: 10.2307/2985222.
F.C. Garner, M.A. Stapanian, E.A. Yfantis and L.R. Williams, Probability Estimation With Sample Compositing Techniques, Journal of Official Statistics 5 (1989) 365-374.
J. Hartung, G. Knapp and B.K. Sinha, Statistical Meta-Analysis with Applications (John Wiley Sons, Hoboken, 2008). doi: 10.1002/9780470386347.
P. Holland, Covariance stabilizing transformations, Ann. Stat. 14 (1973) 84-92. doi: 10.1214/aos/1193342384.
J.M. Hughes-Oliver, Pooling experiments for blood screening and drug discovery, in: Screening - Methods for Experimentation in Industry, Drug Discovery, and Genetics, Dean and Lewis (Ed(s)), (New York: Springer, 2006) 48-68.
M. Hung and W.H. Swallow, Robustness of Group Testing in the Estimation of Proportions, Biometrics 55 (1999) 231-237. doi: 10.1111/j.0006-341X.1999.00231.x.
F.K. Hwang, Group testing with a dilution effect, Biometrika 63 (1976) 671-673. doi: 10.1093/biomet/63.3.671.
N. Johnson, S. Kotz and X. Wu, Inspection Errors for Attributes in Quality Control (Chapman and Hall Ltd., NewYork, 1991).
N. Johnson, S. Kotz and N. Balakrishnan, Continuous Univariate Distributions, Vol. 2 (John Wiley Sons, NewYork, 1993).
H. Kim, M. Hudgens, J. Dreyfuss, D. Westreich and C. Pilcher, Comparison of group testing algorithms for case identification in the presence of testing errors, Biometrics 63 (2007) 1152-1163. doi: 10.1111/j.1541-0420.2007.00817.x.
E. Kulinskaya, S. Morgenthaler and R.G. Staudte, Meta Analysis: a guide to calibrating and combining statistical evidence (Wiley, Chichester, 2008).
V.A. Lancaster and S. Keller-McNulty, A Review of Composite Sampling Methods, JASA 93 (1998) 1216-1230. doi: 10.1080/01621459.1998.10473781.
S.C. Liu, K.S. Chiang, C.H. Lin, W.C. Chung, S.H. Lin and T.C. Yang, Cost analysis in choosing group size when group testing for Potato virus Y in the presence of classification errors, Ann. Appl. Biol. 159 (2011) 491-502. doi: 10.1111/j.1744-7348.2011.00513.x.
M.W. Loyer, Bad probability, good statistics, and group testing for binomial estimation, Am. Stat. 37 (1983) 57-59. doi: 10.1080/00031305.1983.10483091.
A.L. Rukhin, B.J. Biggerstaff and M.G. Vangel, Restricted maximum likelihood estimation of a common mean and the Mandel-Paul algorithm, J. Stat. Plan. Infer. 83 (2000) 319-330. doi: 10.1016/S0378-3758(99)00098-1.
R. Santos, D. Pestana and J.P. Martins, Extensions of Dorfman's theory, in: Selected Papers of SPE 2010, Portuguese Statistical Society (Ed(s)), (New York: Springer, 2012) in print.
K.M. Sobel and R.M. Elashoff, Group testing with a new goal, estimation, Biometrika 62 (1975) 181-193. doi: 10.1093/biomet/62.1.181.
A. Sterret, On the detection of defective members of large populations, Ann. Math. Statistics 28 (1957) 1033-1036. doi: 10.1214/aoms/1177706807.
L.M. Wein and S.A. Zenios, Pooled testing for HIV screening: capturing the dilution effect, Oper. Res. 44 (1996) 543-569. doi: 10.1287/opre.44.4.543.
M. Xie, K. Tatsuoka, J. Sacks and S.S. Young, Group testing with blockers and synergism, JASA 96 (2001) 92-102. doi: 10.1198/016214501750333009.
S.A. Zenios and L.M. Wein, Pooled testing for HIV prevalence estimation exploiting the dilution effect, Stat. Med. 17 (1998) 1447-1467. doi: 10.1002/(SICI)1097-0258(19980715)17:131447::AID-SIM862>3.0.CO;2-K.