Voir la notice de l'article provenant de la source Library of Science
@article{DMPS_2013_33_1-2_a5, author = {Martins, Jo\~ao and Felgueiras, Miguel and Santos, Rui}, title = {Meta-analysis techniques applied in prevalence rate estimation}, journal = {Discussiones Mathematicae. Probability and Statistics}, pages = {79--97}, publisher = {mathdoc}, volume = {33}, number = {1-2}, year = {2013}, zbl = {1328.62130}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/DMPS_2013_33_1-2_a5/} }
TY - JOUR AU - Martins, João AU - Felgueiras, Miguel AU - Santos, Rui TI - Meta-analysis techniques applied in prevalence rate estimation JO - Discussiones Mathematicae. Probability and Statistics PY - 2013 SP - 79 EP - 97 VL - 33 IS - 1-2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/DMPS_2013_33_1-2_a5/ LA - en ID - DMPS_2013_33_1-2_a5 ER -
%0 Journal Article %A Martins, João %A Felgueiras, Miguel %A Santos, Rui %T Meta-analysis techniques applied in prevalence rate estimation %J Discussiones Mathematicae. Probability and Statistics %D 2013 %P 79-97 %V 33 %N 1-2 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/DMPS_2013_33_1-2_a5/ %G en %F DMPS_2013_33_1-2_a5
Martins, João; Felgueiras, Miguel; Santos, Rui. Meta-analysis techniques applied in prevalence rate estimation. Discussiones Mathematicae. Probability and Statistics, Tome 33 (2013) no. 1-2, pp. 79-97. https://geodesic-test.mathdoc.fr/item/DMPS_2013_33_1-2_a5/
[1] F. Anscombe, The transformation of poisson, binomial and negative-binomial data, Biometrika 35 (1948) 246-254.
[2] T. Berger, J.W. Mandell and P. Subrahmanya, Maximally efficient two-stage screening, Biometrics 56 (2000) 833-840. doi: 10.1111/j.0006-341X.2000.00833.x.
[3] B.J. Biggerstaff and R.L. Tweedie, Incorporating Variability in Estimates of Heterogeneity in the Random Effects Model in Meta-analysis, Stat. Med. 16 (1997) 753-768. doi: 10.1002/(SICI)1097-0258(19970415)16:7753::AID-SIM494>3.0.CO;2-G.
[4] C.R. Bilder, B. Zang, F. Schaarschmidt and J.M. Tebbs, binGroup: a package for group testing, The R Journal 2 (2010) 56-60.
[5] C.L. Chen and W.H. Swallow, Using group testing to estimate a proportion, and to test the binomial model, Biometrics 46 (1990) 1035-1046. doi: 10.2307/2532446.
[6] W.G. Cochran, The combination of estimates from different experiments, Biometrics 10 (1954) 101-129. doi: 10.2307/3001666.
[7] R. DerSimonian and N. Laird, Meta-analysis in clinical trials, Control. Clin. Trials 7 (1986) 177-178. doi: 10.1016/0197-2456(86)90046-2.
[8] R. Dorfman, The detection of defective members in large populations, Ann. Math. Statistics 14 (1943) 436-440. doi: 10.1214/aoms/1177731363.
[9] H.M. Finuncan, The blood testing problem, Appl. Stat. 13 (1964) 43-50. doi: 10.2307/2985222.
[10] F.C. Garner, M.A. Stapanian, E.A. Yfantis and L.R. Williams, Probability Estimation With Sample Compositing Techniques, Journal of Official Statistics 5 (1989) 365-374.
[11] J. Hartung, G. Knapp and B.K. Sinha, Statistical Meta-Analysis with Applications (John Wiley Sons, Hoboken, 2008). doi: 10.1002/9780470386347.
[12] P. Holland, Covariance stabilizing transformations, Ann. Stat. 14 (1973) 84-92. doi: 10.1214/aos/1193342384.
[13] J.M. Hughes-Oliver, Pooling experiments for blood screening and drug discovery, in: Screening - Methods for Experimentation in Industry, Drug Discovery, and Genetics, Dean and Lewis (Ed(s)), (New York: Springer, 2006) 48-68.
[14] M. Hung and W.H. Swallow, Robustness of Group Testing in the Estimation of Proportions, Biometrics 55 (1999) 231-237. doi: 10.1111/j.0006-341X.1999.00231.x.
[15] F.K. Hwang, Group testing with a dilution effect, Biometrika 63 (1976) 671-673. doi: 10.1093/biomet/63.3.671.
[16] N. Johnson, S. Kotz and X. Wu, Inspection Errors for Attributes in Quality Control (Chapman and Hall Ltd., NewYork, 1991).
[17] N. Johnson, S. Kotz and N. Balakrishnan, Continuous Univariate Distributions, Vol. 2 (John Wiley Sons, NewYork, 1993).
[18] H. Kim, M. Hudgens, J. Dreyfuss, D. Westreich and C. Pilcher, Comparison of group testing algorithms for case identification in the presence of testing errors, Biometrics 63 (2007) 1152-1163. doi: 10.1111/j.1541-0420.2007.00817.x.
[19] E. Kulinskaya, S. Morgenthaler and R.G. Staudte, Meta Analysis: a guide to calibrating and combining statistical evidence (Wiley, Chichester, 2008).
[20] V.A. Lancaster and S. Keller-McNulty, A Review of Composite Sampling Methods, JASA 93 (1998) 1216-1230. doi: 10.1080/01621459.1998.10473781.
[21] S.C. Liu, K.S. Chiang, C.H. Lin, W.C. Chung, S.H. Lin and T.C. Yang, Cost analysis in choosing group size when group testing for Potato virus Y in the presence of classification errors, Ann. Appl. Biol. 159 (2011) 491-502. doi: 10.1111/j.1744-7348.2011.00513.x.
[22] M.W. Loyer, Bad probability, good statistics, and group testing for binomial estimation, Am. Stat. 37 (1983) 57-59. doi: 10.1080/00031305.1983.10483091.
[23] A.L. Rukhin, B.J. Biggerstaff and M.G. Vangel, Restricted maximum likelihood estimation of a common mean and the Mandel-Paul algorithm, J. Stat. Plan. Infer. 83 (2000) 319-330. doi: 10.1016/S0378-3758(99)00098-1.
[24] R. Santos, D. Pestana and J.P. Martins, Extensions of Dorfman's theory, in: Selected Papers of SPE 2010, Portuguese Statistical Society (Ed(s)), (New York: Springer, 2012) in print.
[25] K.M. Sobel and R.M. Elashoff, Group testing with a new goal, estimation, Biometrika 62 (1975) 181-193. doi: 10.1093/biomet/62.1.181.
[26] A. Sterret, On the detection of defective members of large populations, Ann. Math. Statistics 28 (1957) 1033-1036. doi: 10.1214/aoms/1177706807.
[27] L.M. Wein and S.A. Zenios, Pooled testing for HIV screening: capturing the dilution effect, Oper. Res. 44 (1996) 543-569. doi: 10.1287/opre.44.4.543.
[28] M. Xie, K. Tatsuoka, J. Sacks and S.S. Young, Group testing with blockers and synergism, JASA 96 (2001) 92-102. doi: 10.1198/016214501750333009.
[29] S.A. Zenios and L.M. Wein, Pooled testing for HIV prevalence estimation exploiting the dilution effect, Stat. Med. 17 (1998) 1447-1467. doi: 10.1002/(SICI)1097-0258(19980715)17:131447::AID-SIM862>3.0.CO;2-K.