Voir la notice de l'article provenant de la source Library of Science
@article{DMPS_2013_33_1-2_a4, author = {Ferreira, Marta}, title = {On the tail index estimation of an autoregressive {Pareto} process}, journal = {Discussiones Mathematicae. Probability and Statistics}, pages = {65--77}, publisher = {mathdoc}, volume = {33}, number = {1-2}, year = {2013}, zbl = {1319.60114}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/DMPS_2013_33_1-2_a4/} }
TY - JOUR AU - Ferreira, Marta TI - On the tail index estimation of an autoregressive Pareto process JO - Discussiones Mathematicae. Probability and Statistics PY - 2013 SP - 65 EP - 77 VL - 33 IS - 1-2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/DMPS_2013_33_1-2_a4/ LA - en ID - DMPS_2013_33_1-2_a4 ER -
Ferreira, Marta. On the tail index estimation of an autoregressive Pareto process. Discussiones Mathematicae. Probability and Statistics, Tome 33 (2013) no. 1-2, pp. 65-77. https://geodesic-test.mathdoc.fr/item/DMPS_2013_33_1-2_a4/
[1] B.C. Arnold, Pareto Distributions (International Cooperative Publishing House, Fairland, 1983).
[2] B.C. Arnold, Pareto processes, in: Handbook of Statistics, D.N. Shanbhag and C.R. Rao, eds., Vol. 19, (Elsevier Science B.V., 2001).
[3] R. Davis and S. Resnick, Basic properties and prediction of max-ARMA processes, Adv. Appl. Probab. 21 (1989) 781-803. doi: 10.1214/aos/1176347397.
[4] A.L.M. Dekkers, J.H.J. Einmahl and L. de Haan, A moment estimator for the index of an extreme value distribution, Ann. Statist. 17 (1989) 1833-1855. doi: 10.1214/aos/1176347397.
[5] H. Drees, On smooth statistical tail functionals, Scand. J. Statist. 25 (1998a) 187-210. doi: 10.1111/1467-9469.00097.
[6] H. Drees, A general class of estimators of the extreme value index, J. Statist. Plann. Inference 66) 1998b (95-112. doi: 10.1016/S0378-3758(97)00076-1.
[7] H. Drees, Extreme quantile estimation for dependent data with applications to finance, Bernoulli 9 (2003) 617-657. doi: 0.3150/bj/1066223272.
[8] M. Ferreira, On the extremal behavior of a pareto process: an alternative for armax modeling, Kybernetika 48 (2012) 31-49.
[9] M. Ferreira, Tail dependence of a Pareto process, accepted for publication in Studies in Theoretical and Applied Statistics - Selected Papers of the Statistical Societies, Springer.
[10] H. Ferreira and M. Ferreira, Tail dependence between order statistics, J. Multivariate Anal. 105 (2012) 176-192. doi: 10.1016/j.jmva.2011.09.001.
[11] H. Ferreira and M. Ferreira, Fragility Index of block tailed vectors, J. Statist. Plann. Inference 142 (2012) 1837-1848. doi: 10.1016/j.jspi.2012.01.021.
[12] J.L. Geluk, L. De Haan and C.G. De Vries, Weak and strong financial fragility. Tinbergen Institute Discussion Paper, TI 2007-023/2, 2007.
[13] B.M. Hill, A simple general approach to inference about the tail of a distribution, Ann. Statist. 3 (1975) 1163-1174. doi: 10.1214/aos/1176343247.
[14] J.R.M. Hosking and J.R. Wallis, Parameter and quantile estimation for the generalized Pareto distribution, Technometrics 29 (1987) 339-349. doi: 10.1080/00401706.1987.10488243.
[15] T. Hsing, On tail estimation using dependent data, Ann. Statist. 19 (1991) 1574-1569. doi: 10.1214/aos/1176348261.
[16] H. Joe, Multivariate Models and Dependence Concepts (Chapman Hall, London, 1997). doi: 10.1201/b13150.
[17] S.D. Krishnarani and K. Jayakumar, A class of autoregressive processes, Statist. Probab. Lett. 78 (2008) 1355-1361. doi: 10.1016/j.spl.2007.12.019.
[18] A.V. Lebedev, Statistical analysis of first-order MARMA processes, Mathematical Notes 83 (2008) 506-511. doi: 10.1134/S0001434608030243.
[19] J. Pickands III, Statistical inference using extreme order statistics, Ann. Statist. 3 (1975) 119-131. doi: 10.1214/aos/1176343003.
[20] S. Resnick and C. Stărică, Consistency of Hill's estimator for dependent data, J. Appl. Probab. 32 (1995) 139-167. doi: 10.2307/3214926.
[21] S. Resnick and C. Stărică, Tail index estimation for dependent data, Ann. Appl. Probab. 8 (1998) 1156-1183. doi: 10.1214/aoap/1028903376 .
[22] H. Rootzén, M.R. Leadbetter and L. de Haan, Tail and Quantile Estimation for Strongly Mixing Stationary Sequences. Technical Report, UNC Center for Stochastic Processes, 1990.
[23] M. Sibuya, Bivariate extreme statistics, Ann. Inst. Statist. Math. 11 (1960) 195-210. doi: 10.1007/BF01682329.
[24] R.L. Smith, Estimating tails of probability distributions, Ann. Statist. 15 (1987) 1174-1207. doi: 10.1214/aos/1176350499.
[25] H.C. Yeh, B.C. Arnold and C.A. Robertson, Pareto processes, J. Appl. Probab. 25 (1988) 291-301. doi: 10.2307/3214437.