On the tail index estimation of an autoregressive Pareto process
Discussiones Mathematicae Probability and Statistics, Tome 33 (2013) no. 1-2.

Voir la notice de l'article dans The Library of Science

In this paper we consider an autoregressive Pareto process which can be used as an alternative to heavy tailed MARMA. We focus on the tail behavior and prove that the tail empirical quantile function can be approximated by a Gaussian process. This result allows to derive a class of consistent and asymptotically normal estimators for the shape parameter. We will see through simulation that the usual estimation procedure based on an i.i.d. setting may fall short of the desired precision.
Mots-clés : extreme value theory, autoregressive processes, tail index estimation
@article{DMPS_2013_33_1-2_a4,
     author = {Ferreira, Marta},
     title = {On the tail index estimation of an autoregressive {Pareto} process},
     journal = {Discussiones Mathematicae Probability and Statistics},
     publisher = {mathdoc},
     volume = {33},
     number = {1-2},
     year = {2013},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/DMPS_2013_33_1-2_a4/}
}
TY  - JOUR
AU  - Ferreira, Marta
TI  - On the tail index estimation of an autoregressive Pareto process
JO  - Discussiones Mathematicae Probability and Statistics
PY  - 2013
VL  - 33
IS  - 1-2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/DMPS_2013_33_1-2_a4/
LA  - en
ID  - DMPS_2013_33_1-2_a4
ER  - 
%0 Journal Article
%A Ferreira, Marta
%T On the tail index estimation of an autoregressive Pareto process
%J Discussiones Mathematicae Probability and Statistics
%D 2013
%V 33
%N 1-2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/DMPS_2013_33_1-2_a4/
%G en
%F DMPS_2013_33_1-2_a4
Ferreira, Marta. On the tail index estimation of an autoregressive Pareto process. Discussiones Mathematicae Probability and Statistics, Tome 33 (2013) no. 1-2. https://geodesic-test.mathdoc.fr/item/DMPS_2013_33_1-2_a4/

B.C. Arnold, Pareto Distributions (International Cooperative Publishing House, Fairland, 1983).

B.C. Arnold, Pareto processes, in: Handbook of Statistics, D.N. Shanbhag and C.R. Rao, eds., Vol. 19, (Elsevier Science B.V., 2001).

R. Davis and S. Resnick, Basic properties and prediction of max-ARMA processes, Adv. Appl. Probab. 21 (1989) 781-803. doi: 10.1214/aos/1176347397.

A.L.M. Dekkers, J.H.J. Einmahl and L. de Haan, A moment estimator for the index of an extreme value distribution, Ann. Statist. 17 (1989) 1833-1855. doi: 10.1214/aos/1176347397.

H. Drees, On smooth statistical tail functionals, Scand. J. Statist. 25 (1998a) 187-210. doi: 10.1111/1467-9469.00097.

H. Drees, A general class of estimators of the extreme value index, J. Statist. Plann. Inference 66) 1998b (95-112. doi: 10.1016/S0378-3758(97)00076-1.

H. Drees, Extreme quantile estimation for dependent data with applications to finance, Bernoulli 9 (2003) 617-657. doi: 0.3150/bj/1066223272.

M. Ferreira, On the extremal behavior of a pareto process: an alternative for armax modeling, Kybernetika 48 (2012) 31-49.

M. Ferreira, Tail dependence of a Pareto process, accepted for publication in Studies in Theoretical and Applied Statistics - Selected Papers of the Statistical Societies, Springer.

H. Ferreira and M. Ferreira, Tail dependence between order statistics, J. Multivariate Anal. 105 (2012) 176-192. doi: 10.1016/j.jmva.2011.09.001.

H. Ferreira and M. Ferreira, Fragility Index of block tailed vectors, J. Statist. Plann. Inference 142 (2012) 1837-1848. doi: 10.1016/j.jspi.2012.01.021.

J.L. Geluk, L. De Haan and C.G. De Vries, Weak and strong financial fragility. Tinbergen Institute Discussion Paper, TI 2007-023/2, 2007.

B.M. Hill, A simple general approach to inference about the tail of a distribution, Ann. Statist. 3 (1975) 1163-1174. doi: 10.1214/aos/1176343247.

J.R.M. Hosking and J.R. Wallis, Parameter and quantile estimation for the generalized Pareto distribution, Technometrics 29 (1987) 339-349. doi: 10.1080/00401706.1987.10488243.

T. Hsing, On tail estimation using dependent data, Ann. Statist. 19 (1991) 1574-1569. doi: 10.1214/aos/1176348261.

H. Joe, Multivariate Models and Dependence Concepts (Chapman Hall, London, 1997). doi: 10.1201/b13150.

S.D. Krishnarani and K. Jayakumar, A class of autoregressive processes, Statist. Probab. Lett. 78 (2008) 1355-1361. doi: 10.1016/j.spl.2007.12.019.

A.V. Lebedev, Statistical analysis of first-order MARMA processes, Mathematical Notes 83 (2008) 506-511. doi: 10.1134/S0001434608030243.

J. Pickands III, Statistical inference using extreme order statistics, Ann. Statist. 3 (1975) 119-131. doi: 10.1214/aos/1176343003.

S. Resnick and C. Stărică, Consistency of Hill's estimator for dependent data, J. Appl. Probab. 32 (1995) 139-167. doi: 10.2307/3214926.

S. Resnick and C. Stărică, Tail index estimation for dependent data, Ann. Appl. Probab. 8 (1998) 1156-1183. doi: 10.1214/aoap/1028903376 .

H. Rootzén, M.R. Leadbetter and L. de Haan, Tail and Quantile Estimation for Strongly Mixing Stationary Sequences. Technical Report, UNC Center for Stochastic Processes, 1990.

M. Sibuya, Bivariate extreme statistics, Ann. Inst. Statist. Math. 11 (1960) 195-210. doi: 10.1007/BF01682329.

R.L. Smith, Estimating tails of probability distributions, Ann. Statist. 15 (1987) 1174-1207. doi: 10.1214/aos/1176350499.

H.C. Yeh, B.C. Arnold and C.A. Robertson, Pareto processes, J. Appl. Probab. 25 (1988) 291-301. doi: 10.2307/3214437.