Voir la notice de l'article provenant de la source Library of Science
@article{DMPS_2012_32_1-2_a0, author = {Koshkin, Sergiy and Cui, Yunwei}, title = {Binomial {ARMA} count series from renewal processes}, journal = {Discussiones Mathematicae. Probability and Statistics}, pages = {5--16}, publisher = {mathdoc}, volume = {32}, number = {1-2}, year = {2012}, zbl = {1291.62166}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/DMPS_2012_32_1-2_a0/} }
TY - JOUR AU - Koshkin, Sergiy AU - Cui, Yunwei TI - Binomial ARMA count series from renewal processes JO - Discussiones Mathematicae. Probability and Statistics PY - 2012 SP - 5 EP - 16 VL - 32 IS - 1-2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/DMPS_2012_32_1-2_a0/ LA - en ID - DMPS_2012_32_1-2_a0 ER -
Koshkin, Sergiy; Cui, Yunwei. Binomial ARMA count series from renewal processes. Discussiones Mathematicae. Probability and Statistics, Tome 32 (2012) no. 1-2, pp. 5-16. https://geodesic-test.mathdoc.fr/item/DMPS_2012_32_1-2_a0/
[1] Time Series: Theory and Methods (Springer, New York, 1991). doi: 10.1007/978-1-4419-0320-4
[2] Time series formed from the superposition of discrete renewal processes, Journal of Applied Probability 26 (1989) 189-195. doi: 10.2307/3214330
[3] Some properties and a characterization of trivariate and multivariate binomial distributions , Statistics 36 (2002) 211-218. doi: 10.1080/02331880212859
[4] A new look at time series of counts , Biometrika 96 (2009) 781-792. doi: 10.1093/biomet/asp057
[5] Inference in binomial AR(1) models, Statistics and Probability Letters 80 (2010) 1985-1990. doi: 10.1016/j.spl.2010.09.003
[6] On the superposition of renewal processes , Biometrika 41 (1954) 91-99
[7] R.A. Davis and R. Wu, A negative binomial model for time series of counts, Biometrika 96 (2009) 735-749. doi: 10.1093/biomet/asp029
[8] An Introduction to Probability Theory and Its Applications, Volume I (3rd ed., Wiley, New York, 1968).
[9] Limit Distributions for Sums of Independent Random Variables (Addison-Wesley, New York, 1968).
[10] E. McKenzie, Discrete variate time series, in: Stochastic Processes: Modelling and Simulation, Handbook of Statistics, 21, D.N. Shanbhag and C.R. Rao (Ed(s)), (North-Holland, Amsterdam, 1999) 573-606
[11] Spectral Analysis and Time Series (Academic Press, London, 1981).
[12] Stochastic Processes (2nd ed., Wiley, New York, 1995).
[13] First-order random coefficient integer-valued autoregressive processes, Journal of Statistical Planning and Inference 173 (2007) 212-229. doi: 10.1016/j.jspi.2005.12.003