Fractional-Valued Modal Logic and Soft Bilateralism
Discussiones Mathematicae Graph Theory, Tome 52 (2023) no. 3.

Voir la notice de l'article dans Library of Science

In a recent paper, under the auspices of an unorthodox variety of bilateralism, we introduced a new kind of proof-theoretic semantics for the base modal logic 𝐊, whose values lie in the closed interval [0,1] of rational numbers [14]. In this paper, after clarifying our conception of bilateralism – dubbed “soft bilateralism” – we generalize the fractional method to encompass extensions and weakenings of 𝐊. Specifically, we introduce well-behaved hypersequent calculi for the deontic logic 𝐃 and the non-normal modal logics 𝐄 and 𝐌 and thoroughly investigate their structural properties.
Mots-clés : modal logic, general proof theory (including proof-theoretic semantics), many-valued logics
@article{DMGT_2023_52_3_a0,
     author = {Piazza, Mario and Pulcini, Gabriele and Tesi, Matteo},
     title = {Fractional-Valued {Modal} {Logic} and {Soft} {Bilateralism}},
     journal = {Discussiones Mathematicae Graph Theory},
     publisher = {mathdoc},
     volume = {52},
     number = {3},
     year = {2023},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/DMGT_2023_52_3_a0/}
}
TY  - JOUR
AU  - Piazza, Mario
AU  - Pulcini, Gabriele
AU  - Tesi, Matteo
TI  - Fractional-Valued Modal Logic and Soft Bilateralism
JO  - Discussiones Mathematicae Graph Theory
PY  - 2023
VL  - 52
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/DMGT_2023_52_3_a0/
LA  - en
ID  - DMGT_2023_52_3_a0
ER  - 
%0 Journal Article
%A Piazza, Mario
%A Pulcini, Gabriele
%A Tesi, Matteo
%T Fractional-Valued Modal Logic and Soft Bilateralism
%J Discussiones Mathematicae Graph Theory
%D 2023
%V 52
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/DMGT_2023_52_3_a0/
%G en
%F DMGT_2023_52_3_a0
Piazza, Mario; Pulcini, Gabriele; Tesi, Matteo. Fractional-Valued Modal Logic and Soft Bilateralism. Discussiones Mathematicae Graph Theory, Tome 52 (2023) no. 3. https://geodesic-test.mathdoc.fr/item/DMGT_2023_52_3_a0/

A. Avron, A constructive analysis of RM, The Journal of Symbolic Logic, vol. 52(4) (1987), pp. 939–951 | DOI

A. Avron, Hypersequents, logical consequence and intermediate logics for concurrency, Annals of Mathematics and Artificial Intelligence, vol. 4(3–4) (1991), pp. 225–248 | DOI

A. Avron, The method of hypersequents in the proof theory of propositional non-classical logics, [in:] Logic: From foundations to applications, Clarendon Press (1996), pp. 1–32.

N. Francez, Bilateralism in proof-theoretic semantics, Journal of Philosophical Logic, vol. 43(2–3) (2014), pp. 239–259 | DOI

N. Francez, Proof-theoretic Semantics, College Publications (2015).

V. Goranko, G. Pulcini, T. Skura, Refutation systems: An overview and some applications to philosophical logics, [in:] F. Liu, H. Ono, J. Yu (eds.), Knowledge, Proof and Dynamics, Springer (2020), pp. 173–197 | DOI

N. Kürbis, Proof-theoretic semantics, a problem with negation and prospects for modality, Journal of Philosophical Logic, vol. 44(6) (2015), pp. 713–727 | DOI

N. Kürbis, Some comments on Ian Rumfitt’s bilateralism, Journal of Philosophical Logic, vol. 45(6) (2016), pp. 623–644 | DOI

N. Kürbis, Bilateralist detours: From intuitionist to classical logic and back, [in:] Logique et Analyse, vol. 239 (2017), pp. 301–316 | DOI

G. Mints, Lewis’ systems and system T (1965–1973), [in:] Selected papers in proof theory, Bibliopolis (1992), pp. 221–294.

G. Mints, A Short Introduction to Modal Logic, Center for the Study of Language (CSLI) (1992).

M. Piazza, G. Pulcini, Fractional semantics for classical logic, The Review of Symbolic Logic, vol. 13(4) (2020), pp. 810–828 | DOI

M. Piazza, G. Pulcini, M. Tesi, Linear logic in a refutational setting, unpublished manuscript.

M. Piazza, G. Pulcini, M. Tesi, Fractional-valued modal logic, The Review of Symbolic Logic, (2021), p. 1–20 | DOI

T. Piecha, P. Schroeder-Heister, Advances in Proof-Theoretic Semantics, Springer (2016).

G. Pottinger, Uniform, cut-free formulations of T, S4 and S5, Journal of Symbolic Logic, vol. 48(3) (1983), p. 900 | DOI

G. Pulcini, A. Varzi, Classical logic through rejection and refutation, [in:] M. Fitting (ed.), Landscapes in logic (Vol. 2), College Publications (1992).

G. Pulcini, A. C. Varzi, Complementary Proof Nets for Classical Logic (2023) | DOI

I. Rumfitt, ‘Yes’ and ‘No’, Mind, vol. 109(436) (2000), pp. 781–823 | DOI

T. Skura, Refutation systems in propositional logic, [in:] Handbook of Philosophical Logic: Volume 16, Springer (2010), pp. 115–157 | DOI

H. Wansing, The idea of a proof-theoretic semantics and the meaning of the logical operations, Studia Logica, vol. 64(1) (2000), pp. 3–20 | DOI

H. Wansing, A more general general proof theory, Journal of Applied Logic, vol. 25 (2017), pp. 23–46 | DOI