Voir la notice de l'article dans Library of Science
@article{DMGT_2022_51_4_a0, author = {Cornejo, Juan Manuel and Sankappanavar, Hanamantagouda P.}, title = {A {Logic} for {Dually} {Hemimorphic} {Semi-Heyting} {Algebras} and its {Axiomatic} {Extensions}}, journal = {Discussiones Mathematicae Graph Theory}, publisher = {mathdoc}, volume = {51}, number = {4}, year = {2022}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/DMGT_2022_51_4_a0/} }
TY - JOUR AU - Cornejo, Juan Manuel AU - Sankappanavar, Hanamantagouda P. TI - A Logic for Dually Hemimorphic Semi-Heyting Algebras and its Axiomatic Extensions JO - Discussiones Mathematicae Graph Theory PY - 2022 VL - 51 IS - 4 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/DMGT_2022_51_4_a0/ LA - en ID - DMGT_2022_51_4_a0 ER -
%0 Journal Article %A Cornejo, Juan Manuel %A Sankappanavar, Hanamantagouda P. %T A Logic for Dually Hemimorphic Semi-Heyting Algebras and its Axiomatic Extensions %J Discussiones Mathematicae Graph Theory %D 2022 %V 51 %N 4 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/DMGT_2022_51_4_a0/ %G en %F DMGT_2022_51_4_a0
Cornejo, Juan Manuel; Sankappanavar, Hanamantagouda P. A Logic for Dually Hemimorphic Semi-Heyting Algebras and its Axiomatic Extensions. Discussiones Mathematicae Graph Theory, Tome 51 (2022) no. 4. https://geodesic-test.mathdoc.fr/item/DMGT_2022_51_4_a0/
M. Abad, J. M. Cornejo, J. P. Diaz Varela, The variety generated by semi-Heyting chains, Soft Computing, vol. 15(4) (2010), pp. 721–728 | DOI
M. Abad, J. M. Cornejo, J. P. Díaz Varela, The variety of semi-Heyting algebras satisfying the equation ((0to 1)sp astvee(0to 1)sp {astast}approx 1), Reports on Mathematical Logic, vol. 46 (2011), pp. 75–90.
M. Abad, J. M. Cornejo, J. P. Diaz Varela, Semi-Heyting Algebras Termequivalent to Gödel Algebras, Order, vol. 30(2) (2013), pp. 625–642 | DOI
M. E. Adams, H. P. Sankappanavar, J. Vaz de Carvalho, Regular double palgebras, Mathematica Slovaca, vol. 69(1) (2019), pp. 15–34, DOI: https: //doi.org/10.1515/ms-2017-0200
M. E. Adams, H. P. Sankappanavar, J. Vaz de Carvalho, Varieties of Regular Pseudocomplemented de Morgan Algebras, Order, vol. 37(3) (2020), pp. 529–557 | DOI
W. J. Blok, D. Pigozzi, Algebraizable logics, Memoirs of the American Mathematical Society, vol. 77(396) (1989), pp. vi+78.
S. Burris, H. P. Sankappanavar, A course in universal algebra, vol. 78 of Graduate Texts in Mathematics, Springer-Verlag, New York (1981).
J. M. Cornejo, Semi-intuitionistic logic, Studia Logica, vol. 98(1–2) (2011), pp. 9–25 | DOI
J. M. Cornejo, M. Kinyon, H. P. Sankappanavar, Regular double p-algebras: A converse to a Katriňák’s theorem, and applications (2022), preprint.
J. M. Cornejo, L. F. Monteiro, H. P. Sankappanavar, I. D. Viglizzo, A note on chain-based semi-Heyting algebras, Mathematical Logic Quarterly, vol. 66(4) (2020), pp. 409–417 | DOI
J. M. Cornejo, H. P. Sankappanavar, Semi-Heyting Algebras and Identities of Associative Type, Bulletin of the Section of Logic, vol. 48(2) (2019), pp. 117–135 | DOI
J. M. Cornejo, H. P. Sankappanavar, Connexive logics arising from semi-Heyting algebras and from dually hemimorphic semi-Heyting algebras (2022), in Preparation
J. M. Cornejo, I. Viglizzo, Semi-intuitionistic Logic with Strong Negation, Studia Logica, vol. 106(2) (2017), pp. 281–293 | DOI
J. M. Cornejo, I. D. Viglizzo, On Some Semi-Intuitionistic Logics, Studia Logica, vol. 103(2) (2015), pp. 303–344 | DOI
J. M. Cornejo, I. D. Viglizzo, Semi-Nelson Algebras, Order, vol. 35(1) (2018), pp. 23–45 | DOI
J. Font, Abstract Algebraic Logic. An Introductory Textbook, College Publications, Rickmansworth (2016).
J. M. Font, R. Jansana, D. Pigozzi, A Survey of Abstract Algebraic Logic, Studia Logica, vol. 74(1/2) (2003), pp. 13–97 | DOI
T. Jarmużek, J. Malinowski, Boolean Connexive Logics: Semantics and tableau approach, Logic and Logical Philosophy, vol. 28 (2019), pp. 427–448 | DOI
T. Katriňák, The structure of distributive double p-algebras. Regularity and congruences, Algebra Universalis, vol. 3(1) (1973), pp. 238–246 | DOI
G. Moisil, Essais sur les logiques non chrysippiennes, Éditions de l’Académie Socialiste de Roumanie (1972), URL: https://books.google.com.ar/books?id=pjjQAAAAMAAJ
G. C. Moisil, Logique modale. Disquisitiones mathematicae et physicae (Bucharest), vol. 2 (1942), pp. 3–98., Journal of Symbolic Logic, vol. 13(3) (1948), pp. 162–163 | DOI
A. A. Monteiro, Sur les algèbres de Heyting symétriques, Portugaliae Mathematica, vol. 39(1–4) (1980), pp. 1–237, URL: https://eudml.org/doc/115416 special Issue in honor of António Monteiro.
H. Rasiowa, An algebraic approach to non-classical logics, Studies in Logic and the Foundations of Mathematics, Vol. 78, North-Holland Publishing Co., Amsterdam (1974).
H. P. Sankappanavar, Heyting algebras with dual pseudocomplementation, Pacific Journal of Mathematics, vol. 117(2) (1985), pp. 405–415 | DOI
H. P. Sankappanavar, Semi-Heyting algebras, Amererican Mathematical Society Abstracts, (1985), p. 13.
H. P. Sankappanavar, Heyting algebras with a dual lattice endomorphism, Zeitschrift f für Mathematische Logik und Grundlagen der Mathematik, vol. 33(6) (1987), pp. 565–573 | DOI
H. P. Sankappanavar, Semi-De Morgan algebras, The Journal of Symbolic Logic, vol. 52(3) (1987), pp. 712–724 | DOI
H. P. Sankappanavar, Semi-Heyting algebras: An abstraction from Heyting algebras, Actas del Congreso “Dr. Antonio A. R. Monteiro”, [in:] Proceedings of the 9th “Dr. Antonio A. R. Monteiro” Congress (Spanish), Univ. Nac. del Sur, Bahı́a Blanca (2008), pp. 33–66.
H. P. Sankappanavar, Expansions of semi-Heyting algebras I: Discriminator varieties, Studia Logica, vol. 98(1–2) (2011), pp. 27–81 | DOI
H. P. Sankappanavar, Dually quasi-De Morgan Stone semi-Heyting algebras I. Regularity, Categories and General Algebraic Structures with Applications, vol. 2(1) (2014), pp. 47–64, URL: https://cgasa.sbu.ac.ir/article_6483.html
H. P. Sankappanavar, Dually quasi-De Morgan Stone semi-Heyting algebras II. Regularity, Categories and General Algebraic Structures with Applications, vol. 2(1) (2014), pp. 65–82, URL: https://cgasa.sbu.ac.ir/article_6799.html
H. P. Sankappanavar, A note on regular De Morgan Stone semi-Heyting algebras, Demonstracio Mathematica, vol. 49(3) (2016), pp. 252–265 | DOI
H. P. Sankappanavar, JI-distributive dually quasi-De Morgan semi-Heyting and Heyting algebras, Scientiae Mathematicae Japonicae, vol. 82(3) (2019), pp. 245–271, 245 | DOI
H. P. Sankappanavar, De Morgan semi-Heyting and Heyting algebras, [in:] K. P. Shum, E. Zelmanov, P. Kolesnikov, S. M. Anita Wong (eds.), New Trends in Algebras and Combinatorics. Proceeding of the 3rd International Congress in Algebra and Combinatorics ICAC2017, Hong Kong, China, 25–28 August 2017 (2020), pp. 447–457 | DOI
H. P. Sankappanavar, A few historical glimpses into the interplay between algebra and logic and investigations into Gautama algebras, [in:] S. Sarukkai, M. K. Chakraborty (eds.), Handbook of Logical Thought in India, Springer, New Delhi (2022), pp. 1–75 | DOI
H. P. Sankappanavar, Gautama and Almost Gautama algebras and their associated logics (2022), preprint.
J. Varlet, A regular variety of type (2,2,1,1,0,0), Algebra Universalis, vol. 2(1) (1972), pp. 218–223 | DOI
H. Wansing, Connexive Logic, [in:] E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy, Summer 2022 ed., Metaphysics Research Lab, Stanford University (2022).