A Logic for Dually Hemimorphic Semi-Heyting Algebras and its Axiomatic Extensions
Discussiones Mathematicae Graph Theory, Tome 51 (2022) no. 4.

Voir la notice de l'article dans Library of Science

The variety 𝔻ℍ𝕄𝕊ℍ of dually hemimorphic semi-Heyting algebras was introduced in 2011 by the second author as an expansion of semi-Heyting algebras by a dual hemimorphism. In this paper, we focus on the variety 𝔻ℍ𝕄𝕊ℍ from a logical point of view. The paper presents an extensive investigation of the logic corresponding to the variety of dually hemimorphic semi-Heyting algebras and of its axiomatic extensions, along with an equally extensive universal algebraic study of their corresponding algebraic semantics. Firstly, we present a Hilbert-style axiomatization of a new logic called quot;Dually hemimorphic semi-Heyting logic quot; (𝒟ℋℳ𝒮ℋ, for short), as an expansion of semi-intuitionistic logic 𝒮ℐ (also called 𝒮ℋ) introduced by the first author by adding a weak negation (to be interpreted as a dual hemimorphism). We then prove that it is implicative in the sense of Rasiowa and that it is complete with respect to the variety 𝔻ℍ𝕄𝕊ℍ. It is deduced that the logic 𝒟ℋℳ𝒮ℋ is algebraizable in the sense of Blok and Pigozzi, with the variety 𝔻ℍ𝕄𝕊ℍ as its equivalent algebraic semantics and that the lattice of axiomatic extensions of 𝒟ℋℳ𝒮ℋ is dually isomorphic to the lattice of subvarieties of 𝔻ℍ𝕄𝕊ℍ. A new axiomatization for Moisil's logic is also obtained. Secondly, we characterize the axiomatic extensions of 𝒟ℋℳ𝒮ℋ in which the quot;Deduction Theorem quot; holds. Thirdly, we present several new logics, extending the logic 𝒟ℋℳ𝒮ℋ, corresponding to several important subvarieties of the variety 𝔻ℍ𝕄𝕊ℍ. These include logics corresponding to the varieties generated by two-element, three-element and some four-element dually quasi-De Morgan semi-Heyting algebras, as well as a new axiomatization for the 3-valued Łukasiewicz logic. Surprisingly, many of these logics turn out to be connexive logics, only a few of which are presented in this paper. Fourthly, we present axiomatizations for two infinite sequences of logics namely, De Morgan Gödel logics and dually pseudocomplemented Gödel logics. Fifthly, axiomatizations are also provided for logics corresponding to many subvarieties of regular dually quasi-De Morgan Stone semi-Heyting algebras, of regular De Morgan semi-Heyting algebras of level 1, and of JI-distributive semi-Heyting algebras of level 1. We conclude the paper with some open problems. Most of the logics considered in this paper are discriminator logics in the sense that they correspond to discriminator varieties. Some of them, just like the classical logic, are even primal in the sense that their corresponding varieties are generated by primal algebras.
Mots-clés : semi-intuitionistic logic, dually hemimorphic semi-Heyting logic, dually quasi-De Morgan semi-Heyting logic, De Morgan semi-Heyting logic, dually pseudocomplemented semi-Heyting logic, regular dually quasi-De Morgan Stone semi-Heyting algebras of level 1, implicative logic, equivalent algebraic semantics, algebraizable logic, De Morgan Gödel logic, dually pseudocomplemented Gödel logic, Moisil's logic, 3-valued Łukasiewicz logic
@article{DMGT_2022_51_4_a0,
     author = {Cornejo, Juan Manuel and Sankappanavar, Hanamantagouda P.},
     title = {A {Logic} for {Dually} {Hemimorphic} {Semi-Heyting} {Algebras} and its {Axiomatic} {Extensions}},
     journal = {Discussiones Mathematicae Graph Theory},
     publisher = {mathdoc},
     volume = {51},
     number = {4},
     year = {2022},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/DMGT_2022_51_4_a0/}
}
TY  - JOUR
AU  - Cornejo, Juan Manuel
AU  - Sankappanavar, Hanamantagouda P.
TI  - A Logic for Dually Hemimorphic Semi-Heyting Algebras and its Axiomatic Extensions
JO  - Discussiones Mathematicae Graph Theory
PY  - 2022
VL  - 51
IS  - 4
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/DMGT_2022_51_4_a0/
LA  - en
ID  - DMGT_2022_51_4_a0
ER  - 
%0 Journal Article
%A Cornejo, Juan Manuel
%A Sankappanavar, Hanamantagouda P.
%T A Logic for Dually Hemimorphic Semi-Heyting Algebras and its Axiomatic Extensions
%J Discussiones Mathematicae Graph Theory
%D 2022
%V 51
%N 4
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/DMGT_2022_51_4_a0/
%G en
%F DMGT_2022_51_4_a0
Cornejo, Juan Manuel; Sankappanavar, Hanamantagouda P. A Logic for Dually Hemimorphic Semi-Heyting Algebras and its Axiomatic Extensions. Discussiones Mathematicae Graph Theory, Tome 51 (2022) no. 4. https://geodesic-test.mathdoc.fr/item/DMGT_2022_51_4_a0/

M. Abad, J. M. Cornejo, J. P. Diaz Varela, The variety generated by semi-Heyting chains, Soft Computing, vol. 15(4) (2010), pp. 721–728 | DOI

M. Abad, J. M. Cornejo, J. P. Díaz Varela, The variety of semi-Heyting algebras satisfying the equation ((0to 1)sp astvee(0to 1)sp {astast}approx 1), Reports on Mathematical Logic, vol. 46 (2011), pp. 75–90.

M. Abad, J. M. Cornejo, J. P. Diaz Varela, Semi-Heyting Algebras Termequivalent to Gödel Algebras, Order, vol. 30(2) (2013), pp. 625–642 | DOI

M. E. Adams, H. P. Sankappanavar, J. Vaz de Carvalho, Regular double palgebras, Mathematica Slovaca, vol. 69(1) (2019), pp. 15–34, DOI: https: //doi.org/10.1515/ms-2017-0200

M. E. Adams, H. P. Sankappanavar, J. Vaz de Carvalho, Varieties of Regular Pseudocomplemented de Morgan Algebras, Order, vol. 37(3) (2020), pp. 529–557 | DOI

W. J. Blok, D. Pigozzi, Algebraizable logics, Memoirs of the American Mathematical Society, vol. 77(396) (1989), pp. vi+78.

S. Burris, H. P. Sankappanavar, A course in universal algebra, vol. 78 of Graduate Texts in Mathematics, Springer-Verlag, New York (1981).

J. M. Cornejo, Semi-intuitionistic logic, Studia Logica, vol. 98(1–2) (2011), pp. 9–25 | DOI

J. M. Cornejo, M. Kinyon, H. P. Sankappanavar, Regular double p-algebras: A converse to a Katriňák’s theorem, and applications (2022), preprint.

J. M. Cornejo, L. F. Monteiro, H. P. Sankappanavar, I. D. Viglizzo, A note on chain-based semi-Heyting algebras, Mathematical Logic Quarterly, vol. 66(4) (2020), pp. 409–417 | DOI

J. M. Cornejo, H. P. Sankappanavar, Semi-Heyting Algebras and Identities of Associative Type, Bulletin of the Section of Logic, vol. 48(2) (2019), pp. 117–135 | DOI

J. M. Cornejo, H. P. Sankappanavar, Connexive logics arising from semi-Heyting algebras and from dually hemimorphic semi-Heyting algebras (2022), in Preparation

J. M. Cornejo, I. Viglizzo, Semi-intuitionistic Logic with Strong Negation, Studia Logica, vol. 106(2) (2017), pp. 281–293 | DOI

J. M. Cornejo, I. D. Viglizzo, On Some Semi-Intuitionistic Logics, Studia Logica, vol. 103(2) (2015), pp. 303–344 | DOI

J. M. Cornejo, I. D. Viglizzo, Semi-Nelson Algebras, Order, vol. 35(1) (2018), pp. 23–45 | DOI

J. Font, Abstract Algebraic Logic. An Introductory Textbook, College Publications, Rickmansworth (2016).

J. M. Font, R. Jansana, D. Pigozzi, A Survey of Abstract Algebraic Logic, Studia Logica, vol. 74(1/2) (2003), pp. 13–97 | DOI

T. Jarmużek, J. Malinowski, Boolean Connexive Logics: Semantics and tableau approach, Logic and Logical Philosophy, vol. 28 (2019), pp. 427–448 | DOI

T. Katriňák, The structure of distributive double p-algebras. Regularity and congruences, Algebra Universalis, vol. 3(1) (1973), pp. 238–246 | DOI

G. Moisil, Essais sur les logiques non chrysippiennes, Éditions de l’Académie Socialiste de Roumanie (1972), URL: https://books.google.com.ar/books?id=pjjQAAAAMAAJ

G. C. Moisil, Logique modale. Disquisitiones mathematicae et physicae (Bucharest), vol. 2 (1942), pp. 3–98., Journal of Symbolic Logic, vol. 13(3) (1948), pp. 162–163 | DOI

A. A. Monteiro, Sur les algèbres de Heyting symétriques, Portugaliae Mathematica, vol. 39(1–4) (1980), pp. 1–237, URL: https://eudml.org/doc/115416 special Issue in honor of António Monteiro.

H. Rasiowa, An algebraic approach to non-classical logics, Studies in Logic and the Foundations of Mathematics, Vol. 78, North-Holland Publishing Co., Amsterdam (1974).

H. P. Sankappanavar, Heyting algebras with dual pseudocomplementation, Pacific Journal of Mathematics, vol. 117(2) (1985), pp. 405–415 | DOI

H. P. Sankappanavar, Semi-Heyting algebras, Amererican Mathematical Society Abstracts, (1985), p. 13.

H. P. Sankappanavar, Heyting algebras with a dual lattice endomorphism, Zeitschrift f für Mathematische Logik und Grundlagen der Mathematik, vol. 33(6) (1987), pp. 565–573 | DOI

H. P. Sankappanavar, Semi-De Morgan algebras, The Journal of Symbolic Logic, vol. 52(3) (1987), pp. 712–724 | DOI

H. P. Sankappanavar, Semi-Heyting algebras: An abstraction from Heyting algebras, Actas del Congreso “Dr. Antonio A. R. Monteiro”, [in:] Proceedings of the 9th “Dr. Antonio A. R. Monteiro” Congress (Spanish), Univ. Nac. del Sur, Bahı́a Blanca (2008), pp. 33–66.

H. P. Sankappanavar, Expansions of semi-Heyting algebras I: Discriminator varieties, Studia Logica, vol. 98(1–2) (2011), pp. 27–81 | DOI

H. P. Sankappanavar, Dually quasi-De Morgan Stone semi-Heyting algebras I. Regularity, Categories and General Algebraic Structures with Applications, vol. 2(1) (2014), pp. 47–64, URL: https://cgasa.sbu.ac.ir/article_6483.html

H. P. Sankappanavar, Dually quasi-De Morgan Stone semi-Heyting algebras II. Regularity, Categories and General Algebraic Structures with Applications, vol. 2(1) (2014), pp. 65–82, URL: https://cgasa.sbu.ac.ir/article_6799.html

H. P. Sankappanavar, A note on regular De Morgan Stone semi-Heyting algebras, Demonstracio Mathematica, vol. 49(3) (2016), pp. 252–265 | DOI

H. P. Sankappanavar, JI-distributive dually quasi-De Morgan semi-Heyting and Heyting algebras, Scientiae Mathematicae Japonicae, vol. 82(3) (2019), pp. 245–271, 245 | DOI

H. P. Sankappanavar, De Morgan semi-Heyting and Heyting algebras, [in:] K. P. Shum, E. Zelmanov, P. Kolesnikov, S. M. Anita Wong (eds.), New Trends in Algebras and Combinatorics. Proceeding of the 3rd International Congress in Algebra and Combinatorics ICAC2017, Hong Kong, China, 25–28 August 2017 (2020), pp. 447–457 | DOI

H. P. Sankappanavar, A few historical glimpses into the interplay between algebra and logic and investigations into Gautama algebras, [in:] S. Sarukkai, M. K. Chakraborty (eds.), Handbook of Logical Thought in India, Springer, New Delhi (2022), pp. 1–75 | DOI

H. P. Sankappanavar, Gautama and Almost Gautama algebras and their associated logics (2022), preprint.

J. Varlet, A regular variety of type (2,2,1,1,0,0), Algebra Universalis, vol. 2(1) (1972), pp. 218–223 | DOI

H. Wansing, Connexive Logic, [in:] E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy, Summer 2022 ed., Metaphysics Research Lab, Stanford University (2022).