Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2021_41_1_a7, author = {Klostermeyer, William F. and Messinger, Margaret-Ellen and Yeo, Anders}, title = {Dominating {Vertex} {Covers:} {The} {Vertex-Edge} {Domination} {Problem}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {123--132}, publisher = {mathdoc}, volume = {41}, number = {1}, year = {2021}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/DMGT_2021_41_1_a7/} }
TY - JOUR AU - Klostermeyer, William F. AU - Messinger, Margaret-Ellen AU - Yeo, Anders TI - Dominating Vertex Covers: The Vertex-Edge Domination Problem JO - Discussiones Mathematicae. Graph Theory PY - 2021 SP - 123 EP - 132 VL - 41 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/DMGT_2021_41_1_a7/ LA - en ID - DMGT_2021_41_1_a7 ER -
%0 Journal Article %A Klostermeyer, William F. %A Messinger, Margaret-Ellen %A Yeo, Anders %T Dominating Vertex Covers: The Vertex-Edge Domination Problem %J Discussiones Mathematicae. Graph Theory %D 2021 %P 123-132 %V 41 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/DMGT_2021_41_1_a7/ %G en %F DMGT_2021_41_1_a7
Klostermeyer, William F.; Messinger, Margaret-Ellen; Yeo, Anders. Dominating Vertex Covers: The Vertex-Edge Domination Problem. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 1, pp. 123-132. https://geodesic-test.mathdoc.fr/item/DMGT_2021_41_1_a7/
[1] R. Boutrig, M. Chellali, T.W. Haynes and S.T. Hedetniemi, Vertex-edge domination in graphs, Aequationes Math. 90 (2016) 355–366. doi: 10.1007/s00010-015-0354-2
[2] D. Dereniowski, H. Ono, I. Suzuki, Ł. Wrona, M. Yamashita and P. Żylinski, The searchlight problem for road networks, Theoret. Comput. Sci. 591 (2015) 28–59. doi: 10.1016/j.tcs.2015.04.026
[3] M.A. Henning and A. Yeo, Transversals in 4-uniform hypergraphs, Electron. J. Combin. 23 (2016) #P3.50.
[4] W.F. Klostermeyer and C.M. Mynhardt, Edge protection in graphs, Australas. J. Combin. 45 (2009) 235–250.
[5] W.F. Klostermeyer and C.M. Mynhardt, Protecting a graph with mobile guards, Appl. Anal. Discrete Math. 10 (2016) 1–29. doi: 10.2298/AADM151109021K
[6] A.V. Kostochka and C. Stocker, A new bound on the domination number of connected cubic graphs, Sib. Èlektron. Mat. Izv. 6 (2009) 465–504.
[7] B. Krishnakumari, Y.B. Venkatakrishnan and M. Krzywkowski, Bounds on the vertex-edge domination number of a tree, C.R. Math. 352 (2014) 363–366. doi: 10.1016/j.crma.2014.03.017
[8] J.R. Lewis, Vertex-Edge and Edge-Vertex Domination in Graphs, Ph.D. Thesis (Clemson University, Clemson, 2007).
[9] J.R. Lewis, S.T. Hedetniemi, T.W. Haynes and G.H. Fricke, Vertex-edge domination, Util. Math. 81 (2010) 193–213.
[10] J.W. Peters, Theoretical and Algorithmic Results on Domination and Connectivity, Ph.D. Thesis (Clemson University, Clemson, 1986).
[11] Y.B. Venkatakrishnan, C. Natarajan and G. Sathiamoorthy, Vertex-edge and connected domination numbers of a tree, Int. J. Pure Appl. Math. 119 (2018) 103–111.
[12] W.C.K. Yen and C.Y. Tang, An optimal algorithm for solving the searchlight guarding problem on weight two-terminal series-parallel graphs, Acta Inform. 36 (1999) 143–172. doi: 10.1007/s002360050156