Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2020_40_2_a5, author = {Briffa, Johann A. and Sciriha, Irene}, title = {On the {Displacement} of {Eigenvalues} {When} {Removing} a {Twin} {Vertex}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {435--450}, publisher = {mathdoc}, volume = {40}, number = {2}, year = {2020}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/DMGT_2020_40_2_a5/} }
TY - JOUR AU - Briffa, Johann A. AU - Sciriha, Irene TI - On the Displacement of Eigenvalues When Removing a Twin Vertex JO - Discussiones Mathematicae. Graph Theory PY - 2020 SP - 435 EP - 450 VL - 40 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/DMGT_2020_40_2_a5/ LA - en ID - DMGT_2020_40_2_a5 ER -
Briffa, Johann A.; Sciriha, Irene. On the Displacement of Eigenvalues When Removing a Twin Vertex. Discussiones Mathematicae. Graph Theory, Tome 40 (2020) no. 2, pp. 435-450. https://geodesic-test.mathdoc.fr/item/DMGT_2020_40_2_a5/
[1] D. Cvetković, P. Rowlinson and S. Simić, An Introduction to the Theory of Graph Spectra (Cambridge University Press, Cambridge, 2001). doi:10.1017/CBO9780511801518
[2] C.E. Fröberg, Introduction to Numerical Analysis (Addison-Wesley Publishing Company, MA, 1965).
[3] W.H. Haemers, Eigenvalue Techniques in Design and Graph Theory, Ph.D. Thesis (Stichting Mathematisch Centrum, Amsterdam, 1979). doi:10.6100/IR41103
[4] W.H. Haemers, Interlacing eigenvalues and graphs, Linear Algebra Appl. 226–228 (1995) 593–616. doi:10.1016/0024-3795(95)00199-2
[5] F. Harary and A. Schwenk, The spectral approach to determining the number of walks in a graph, Pacific J. Math. 80 (1979) 443–449. doi:10.2140/pjm.1979.80.443
[6] E. Heilbronner, Das Kompositions-Prinzip: Eine anschauliche Methode zur elektronen-theoretischen Behandlung nicht oder niedrig symmetrischer Molekeln im Rahmen der MO-Theorie, Helvetica Chimica Acta 36 (1953) 170–188. doi:10.1002/hlca.19530360125
[7] E. Heilbronner, Molecular Orbitals in homologen Reihen mehrkerniger aromatischer Kohlenwasserstoffe: I. Die Eigenwerte von LCAO-MO’s in homologen Reihen, Helvetica Chimica Acta 37 (1954) 921–935. doi:10.1002/hlca.19540370336
[8] E. Heilbronner, Ein graphisches Verfahren zur Faktorisierung der Säkulardeterminante aromatischer Ringsysteme im Rahmen der LCAO–MO-Theorie, Helvetica Chimica Acta 37 (1954) 913–921. doi:10.1002/hlca.19540370335
[9] E. Heilbronner, Über einen graphentheoretischen Zusammenhang zwischen dem HÜCKEL’schen MO-Verfahren und dem Formalismus der Resonanztheorie, Helvetica Chimica Acta 45 (1962) 1722–1725. doi:10.1002/hlca.19620450538
[10] E. Heilbronner, Some comments on cospectral graphs, Math. Chem. 5 (1979) 105–133.
[11] L. Lovász, Eigenvalues of graphs (2007). http://web.cs.elte.hu/lovasz/eigenvals-x.pdf
[12] M.C. Marino, I. Sciriha, S.K. Simić and D.V. Tošić, More about singular line graphs of trees, Publ. Inst. Math. (Beograd) (N.S.) 79(93) (2006) 1–12. doi:10.2298/PIM0693001M
[13] A. Mohammadian and V. Trevisan, Some spectral properties of cographs, Discrete Math. 339 (2016) 1261–1264. doi:10.1016/j.disc.2015.11.005
[14] V.R. Rosenfeld, Another form of the transmission function, J. Math. Chem. 51 (2013) 2639–2643. doi:10.1007/s10910-013-0239-3
[15] P. Rowlinson, Co-cliques and star complements in extremal strongly regular graphs, Linear Algebra Appl. 421 (2007) 157–162. doi:10.1016/j.laa.2006.04.002
[16] P. Rowlinson, The main eigenvalues of a graph: A survey, Appl. Anal. Discrete Math. 1 (2007) 455–471. doi:10.2298/AADM0702445R
[17] A.J. Schwenk, Computing the characteristic polynomial of a graph, in: Graphs and Combinatorics, Lecture Notes in Math. 406 (Springer, Berlin, Heidelberg, 1974) 153–172. doi:10.1007/BFb0066438
[18] I. Sciriha, J.A. Briffa and M. Debono, Fast algorithms for indices of nested split graphs approximating real complex networks, Discrete Appl. Math. 247 (2018) 152–164. doi:10.1016/j.dam.2018.03.054
[19] I. Sciriha, M. Debono, M. Borg, P. Fowler and B. Pickup, Interlacing-extremal graphs, Ars Math. Contemp. 6 (2013) 261–278. doi:10.26493/1855-3974.275.574
[20] I. Sciriha and S. Farrugia, On the spectrum of threshold graphs, ISRN Discrete Math. 2011 (2011) #108509. doi:10.5402/2011/108509
[21] W. So, Rank one perturbation and its application to the Laplacian spectrum of a graph, Linear Multilinear Algebra 46 (1999) 193–198. doi:10.1080/03081089908818613
[22] M. Thüne, Eigenvalues of Matrices and Graphs, Ph.D. Thesis (Leipzig University, Leipzig, 1979).