Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2019_39_1_a9, author = {Sakamoto, Yutaro}, title = {Hamilton {Cycles} in {Double} {Generalized} {Petersen} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {117--123}, publisher = {mathdoc}, volume = {39}, number = {1}, year = {2019}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/DMGT_2019_39_1_a9/} }
Sakamoto, Yutaro. Hamilton Cycles in Double Generalized Petersen Graphs. Discussiones Mathematicae. Graph Theory, Tome 39 (2019) no. 1, pp. 117-123. https://geodesic-test.mathdoc.fr/item/DMGT_2019_39_1_a9/
[1] B. Alspach, The classification of Hamiltonian generalized Petersen graphs, J. Combin. Theory Ser. B 34 (1983) 293-312. doi: 10.1016/0095-8956(83)90042-4
[2] F. Castagna and G. Prins, Every generalized Petersen graph has a Tait coloring, Pacific J. Math. 40 (1972) 53-58. doi: 10.2140/pjm.1972.40.53
[3] H.S.M. Coxeter, Self-dual configurations and regular graphs, Bull. Amer. Math. Soc. 56 (1950) 413-455. doi: 10.1090/S0002-9904-1950-09407-5
[4] X. Fu, Y. Yang and B. Jiang, On the domination number of generalized Petersen graphs P(n, 2), Discrete Math. 309 (2009) 2445-2451. doi: 10.1016/j.disc.2008.05.026
[5] R.M. Karp, Reducibility among combinatorial problems in: R.E. Miller and J.W. Thatcher (Eds.), (Plenum Press, New York, 1972) 85-103 doi: 10.1007/978-1-4684-2001-2 9.
[6] K. Kutnar and P. Petecki, On automorphisms and structural properties of double generalized Petersen graphs, Discrete Math. 339 (2016) 2861-2870. doi: 10.1016/j.disc.2016.05.032
[7] M.E. Watkins, A theorem on Tait colorings with an application to the generalized Petersen graphs, J. Combin. Theory 6 (1969) 152-164. doi: 10.1016/S0021-9800(69)80116-X
[8] J.-X. Zhou and Y.-Q. Feng, Cubic vertex-transitive non-Cayley graphs of order 8p, Electron. J. Combin. 19 (2012) #P53.
[9] J.-X. Zhou and Y.-Q. Feng, Cubic bi-Cayley graphs over Abelian groups, European J. Combin. 36 (2014) 679-693. doi: 10.1016/j.ejc.2013.10.005.