Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2018_38_1_a19, author = {Sun, Yuefang and Li, Fengwei and Jin, Zemin}, title = {On {Two} {Generalized} {Connectivities} of {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {245--261}, publisher = {mathdoc}, volume = {38}, number = {1}, year = {2018}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/DMGT_2018_38_1_a19/} }
TY - JOUR AU - Sun, Yuefang AU - Li, Fengwei AU - Jin, Zemin TI - On Two Generalized Connectivities of Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2018 SP - 245 EP - 261 VL - 38 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/DMGT_2018_38_1_a19/ LA - en ID - DMGT_2018_38_1_a19 ER -
Sun, Yuefang; Li, Fengwei; Jin, Zemin. On Two Generalized Connectivities of Graphs. Discussiones Mathematicae. Graph Theory, Tome 38 (2018) no. 1, pp. 245-261. https://geodesic-test.mathdoc.fr/item/DMGT_2018_38_1_a19/
[1] S.B. Akers and B. Krishnamurthy, A group-theoretic model for symmetric interconnection networks, IEEE Trans. Comput. 38 (1989) 555–566. doi:10.1109/12.21148
[2] L. Babai, Automorphism groups, isomorphism, reconstruction, in: Handbook of Combinatorics, R.L. Graham et al . (Ed(s)), (Elsevier, Amsterdam, 1995) 1447–1540.
[3] J.-C. Bermond, O. Favaron and M. Maheo, Hamiltonian decomposition of Cayley graphs of degree 4, J. Combin. Theory Ser. B 46 (1989) 142–153. doi:10.1016/0095-8956(89)90040-3
[4] N. Biggs, Algebraic Graph Theory (Cambridge University Press, New York, 1992).
[5] J.A. Bondy and U.S.R. Murty, Graph Theory, GTM 244 (Springer, Berlin, 2008).
[6] G. Chartrand, S.F. Kappor, L. Lesniak and D.R. Lick, Generalized connectivity in graphs, Bull. Bombay Math. Colloq. 2 (1984) 1–6.
[7] G. Chartrand, F. Okamoto and P. Zhang, Rainbow trees in graphs and generalized connectivity, Networks 55 (2010) 360–367. doi:10.1002/net.20339
[8] D.P. Day, O.R. Oellermann and H.C. Swart, The ℓ-connectivity function of trees and complete multipartite graphs, J. Combin. Math. Combin. Comput. 10 (1991) 183–192.
[9] D. Du and X. Hu, Steiner Tree Problems in Computer Communication Networks (World Scientific, 2008). doi:10.1142/6729
[10] C. Fan, D.R. Lick and J. Liu, Pseudo-cartesian product and hamiltonian decompositions of Cayley graphs on abelian groups, Discrete Math. 158 (1996) 49–62. doi:10.1016/0012-365X(95)00035-U
[11] R. Gu, X. Li and Y. Shi, The generalized 3- connectivity of random graphs, Acta Math. Sinica (Chin. Ser.) 57 (2014) 321–330, in Chinese.
[12] M. Grötschel, A. Martin and R. Weismantel, The Steiner tree packing problem in VLSI design, Math. Program. 78 (1997) 265–281. doi:10.1007/BF02614374
[13] M. Grötschel, A. Martin and R. Weismantel, Packing Steiner trees: a cutting plane algorithm and commputational results, Math. Program. 72 (1996) 125–145. doi:10.1007/BF02592086
[14] M. Hager, Pendant tree-connectivity, J. Combin. Theory Ser. B 38 (1985) 179–189. doi:10.1016/0095-8956(85)90083-8
[15] R. Hammack, W. Imrich and S. Klavžar, Handbook of Product Graphs, Second Edition (CRC Press, Boca Raton, 2011).
[16] M.C. Heydemann, Cayley graphs and interconnection networks, in: Graph Symmetry, G. Hahn and G. Sabidussi (Ed(s)), (Kluwer Academic Publishers, Dordrecht, 1997) 167–224. doi:10.1007/978-94-015-8937-6_5
[17] W. Imrich and S. Klavžar, Product Graphs: Structure and Recognition (Wiley, New York, 2000).
[18] W. Imrich, S. Klavžar and D.F. Rall, Topics in Graph Theory: Graphs and Their Cartesian Product (A K Peters, Ltd., Wellesley, 2008).
[19] S. Lakshmivarahan, J.-S. Jwo and S.K. Dhall, Symmetry in interconnection networks based on Cayley graphs of permutation groups: A survey, Parallel Comput. 19 (1993) 361–407. doi:10.1016/0167-8191(93)90054-O
[20] H. Li, X. Li, Y. Mao and Y. Sun, Note on the generalized connectivity, Ars Combin. 114 (2014) 193–202.
[21] H. Li, X. Li and Y. Sun, The generalized 3- connectivity of Cartesian product graphs, Discrete Math. Theor. Comput. Sci. 14 (2012) 43–54.
[22] X. Li and Y. Mao, A survey on the generalized connectivity of graphs . arXiv:1207.1838[math.CO]
[23] X. Li and Y. Mao, On extremal graphs with at most ℓ internally disjoint Steiner trees connecting any n − 1 vertices, Graphs Combin. 31 (2015) 2231–2259. doi:10.1007/s00373-014-1500-7
[24] X. Li and Y. Mao, The generalized 3- connectivity of lexicographic product graphs, Discrete Math. Theor. Comput. Sci. 16 (2014) 339–354.
[25] X. Li and Y. Mao, Generalized Connectivity of Graphs (SpringerBriefs in Mathematics, Springer, Switzerland, 2016).
[26] X. Li, Y. Mao and Y. Sun, On the generalized ( edge- ) connectivity of graphs, Australas. J. Combin. 58 (2014) 304–319.
[27] Y. Mao, On the pedant tree-connectivity of graphs . arXiv:1508.07149v1 [math.CO]
[28] O.R. Oellermann, On the ℓ-connectivity of a graph, Graphs Combin. 3 (1987) 285–291. doi:10.1007/BF01788551
[29] O.R. Oellermann, A note on the ℓ-connectivity function of a graph, Congr. Numer. 60 (1987) 181–188.
[30] N.A. Sherwani, Algorithms for VLSI Physical Design Automation, 3rd Edition (Kluwer Academic Publishers, London, 1999).
[31] W. Shiu, On 3-Regular and 4-Regular Cayley Graphs of Abelian Groups (Technical Report, Dept. of Mathematics, Hong Kong Baptist University, 1995).
[32] Y. Sun, Generalized 3- edge-connectivity of Cartesian product graphs, Czechoslovak Math. J. 65 (2015) 107–117. doi:10.1007/s10587-015-0162-9
[33] Y. Sun, Generalized 3- connectivity and 3- edge-connectivity for the Cartesian products of some graph classes, J. Combin. Math. Combin. Comput. 94 (2015) 215–225.
[34] Y. Sun, Maximum generalized local connectivities of cubic Cayley graphs on Abelian groups, J. Combin. Math. Combin. Comput. 94 (2015) 227–236.
[35] Y. Sun, Sharp upper bounds for generalized edge-connectivity of product graphs, Discuss. Math. Graph Theory 36 (2016) 833–843. doi:10.7151/dmgt.1924
[36] Y. Sun, On the maximum and minimum sizes of a graph with given k-connectivity, Discuss. Math. Graph Theory 37 (2017), in press. doi:10.7151/dmgt.1941
[37] Y. Sun, A sharp lower bound for the generalized 3- edge-connectivity of strong product graphs, Discuss. Math. Graph Theory (2017), in press. doi:10.7151/dmgt.1982
[38] Y. Sun and X. Li, On the difference of two generalized connectivities of a graph, J. Comb. Optim. 33 (2017) 283–291. doi:10.1007/s10878-015-9956-9
[39] Y. Sun and S. Zhou, Tree connectivities of Cayley graphs on Abelian groups with small degrees, Bull. Malays. Math. Sci. Soc. 39 (2016) 1673–1685. doi:10.1007/s40840-015-0147-8
[40] S. Zhou, A class of arc-transitive Cayley graphs as models for interconnection networks, SIAM J. Discrete Math. 23 (2009) 694–714. doi:10.1137/06067434X