Precise Upper Bound for the Strong Edge Chromatic Number of Sparse Planar Graphs
Discussiones Mathematicae Graph Theory, Tome 33 (2013) no. 4, p. 759.

Voir la notice de l'article dans European Digital Mathematics Library

We prove that every planar graph with maximum degree ∆ is strong edge (2∆−1)-colorable if its girth is at least 40 [...] +1. The bound 2∆−1 is reached at any graph that has two adjacent vertices of degree ∆.
Classification : 05C10, 05C15
Mots-clés : planar graph, edge coloring, 2-distance coloring, strong edgecoloring, strong edge coloring
@article{DMGT_2013__33_4_267877,
     author = {Oleg V. Borodin and Anna O. Ivanova},
     title = {Precise {Upper} {Bound} for the {Strong} {Edge} {Chromatic} {Number} of {Sparse} {Planar} {Graphs}},
     journal = {Discussiones Mathematicae Graph Theory},
     pages = {759},
     publisher = {mathdoc},
     volume = {33},
     number = {4},
     year = {2013},
     zbl = {1301.05118},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_4_267877/}
}
TY  - JOUR
AU  - Oleg V. Borodin
AU  - Anna O. Ivanova
TI  - Precise Upper Bound for the Strong Edge Chromatic Number of Sparse Planar Graphs
JO  - Discussiones Mathematicae Graph Theory
PY  - 2013
SP  - 759
VL  - 33
IS  - 4
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_4_267877/
LA  - en
ID  - DMGT_2013__33_4_267877
ER  - 
%0 Journal Article
%A Oleg V. Borodin
%A Anna O. Ivanova
%T Precise Upper Bound for the Strong Edge Chromatic Number of Sparse Planar Graphs
%J Discussiones Mathematicae Graph Theory
%D 2013
%P 759
%V 33
%N 4
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_4_267877/
%G en
%F DMGT_2013__33_4_267877
Oleg V. Borodin; Anna O. Ivanova. Precise Upper Bound for the Strong Edge Chromatic Number of Sparse Planar Graphs. Discussiones Mathematicae Graph Theory, Tome 33 (2013) no. 4, p. 759. https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_4_267877/