Symmetric Hamilton Cycle Decompositions of Complete Multigraphs
Discussiones Mathematicae Graph Theory, Tome 33 (2013) no. 4, p. 695.
Voir la notice de l'article dans European Digital Mathematics Library
Let n ≥ 3 and ⋋ ≥ 1 be integers. Let ⋋Kn denote the complete multigraph with edge-multiplicity ⋋. In this paper, we show that there exists a symmetric Hamilton cycle decomposition of ⋋K2m for all even ⋋ ≥ 2 and m ≥ 2. Also we show that there exists a symmetric Hamilton cycle decomposition of ⋋K2m − F for all odd ⋋ ≥ 3 and m ≥ 2. In fact, our results together with the earlier results (by Walecki and Brualdi and Schroeder) completely settle the existence of symmetric Hamilton cycle decomposition of ⋋Kn (respectively, ⋋Kn − F, where F is a 1-factor of ⋋Kn) which exist if and only if ⋋(n − 1) is even (respectively, ⋋(n − 1) is odd), except the non-existence cases n ≡ 0 or 6 (mod 8) when ⋋ = 1
Classification :
05C45, 05C51, 05C70
Mots-clés : complete multigraph, 1-factor, symmetric Hamilton cycle, decomposition., decomposition
Mots-clés : complete multigraph, 1-factor, symmetric Hamilton cycle, decomposition., decomposition
@article{DMGT_2013__33_4_267866, author = {V. Chitra and A. Muthusamy}, title = {Symmetric {Hamilton} {Cycle} {Decompositions} of {Complete} {Multigraphs}}, journal = {Discussiones Mathematicae Graph Theory}, pages = {695}, publisher = {mathdoc}, volume = {33}, number = {4}, year = {2013}, zbl = {1297.05138}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_4_267866/} }
TY - JOUR AU - V. Chitra AU - A. Muthusamy TI - Symmetric Hamilton Cycle Decompositions of Complete Multigraphs JO - Discussiones Mathematicae Graph Theory PY - 2013 SP - 695 VL - 33 IS - 4 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_4_267866/ LA - en ID - DMGT_2013__33_4_267866 ER -
V. Chitra; A. Muthusamy. Symmetric Hamilton Cycle Decompositions of Complete Multigraphs. Discussiones Mathematicae Graph Theory, Tome 33 (2013) no. 4, p. 695. https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_4_267866/