Counting Maximal Distance-Independent Sets in Grid Graphs
Discussiones Mathematicae Graph Theory, Tome 33 (2013) no. 3, p. 531.
Voir la notice de l'article dans European Digital Mathematics Library
Previous work on counting maximal independent sets for paths and certain 2-dimensional grids is extended in two directions: 3-dimensional grid graphs are included and, for some/any ℓ ∈ N, maximal distance-ℓ independent (or simply: maximal ℓ-independent) sets are counted for some grids. The transfer matrix method has been adapted and successfully applied
Classification :
05A15, 11B39, 11B83, 05C69
Mots-clés : independent set, grid graph, Fibonacci, Padovan numbers, transfer matrix method
Mots-clés : independent set, grid graph, Fibonacci, Padovan numbers, transfer matrix method
@article{DMGT_2013__33_3_267798, author = {Reinhardt Euler and Pawe{\l} Oleksik and Zdzis{\l}aw Skupie\'n}, title = {Counting {Maximal} {Distance-Independent} {Sets} in {Grid} {Graphs}}, journal = {Discussiones Mathematicae Graph Theory}, pages = {531}, publisher = {mathdoc}, volume = {33}, number = {3}, year = {2013}, zbl = {1322.05109}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_3_267798/} }
TY - JOUR AU - Reinhardt Euler AU - Paweł Oleksik AU - Zdzisław Skupień TI - Counting Maximal Distance-Independent Sets in Grid Graphs JO - Discussiones Mathematicae Graph Theory PY - 2013 SP - 531 VL - 33 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_3_267798/ LA - en ID - DMGT_2013__33_3_267798 ER -
%0 Journal Article %A Reinhardt Euler %A Paweł Oleksik %A Zdzisław Skupień %T Counting Maximal Distance-Independent Sets in Grid Graphs %J Discussiones Mathematicae Graph Theory %D 2013 %P 531 %V 33 %N 3 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_3_267798/ %G en %F DMGT_2013__33_3_267798
Reinhardt Euler; Paweł Oleksik; Zdzisław Skupień. Counting Maximal Distance-Independent Sets in Grid Graphs. Discussiones Mathematicae Graph Theory, Tome 33 (2013) no. 3, p. 531. https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_3_267798/