Maximum Semi-Matching Problem in Bipartite Graphs
Discussiones Mathematicae Graph Theory, Tome 33 (2013) no. 3, p. 559.
Voir la notice de l'article dans European Digital Mathematics Library
An (f, g)-semi-matching in a bipartite graph G = (U ∪ V,E) is a set of edges M ⊆ E such that each vertex u ∈ U is incident with at most f(u) edges of M, and each vertex v ∈ V is incident with at most g(v) edges of M. In this paper we give an algorithm that for a graph with n vertices and m edges, n ≤ m, constructs a maximum (f, g)-semi-matching in running time O(m ⋅ min [...] ) Using the reduction of [5] our result on maximum (f, g)-semi-matching problem directly implies an algorithm for the optimal semi-matching problem with running time O( [...] log n).
Classification :
68Q17, 05C70, 05C85
Mots-clés : semi-matching, quasi-matching, bipartite graph, computational complexity
Mots-clés : semi-matching, quasi-matching, bipartite graph, computational complexity
@article{DMGT_2013__33_3_267689, author = {J\'an Katreni\v{c} and Gabriel Semani\v{s}in}, title = {Maximum {Semi-Matching} {Problem} in {Bipartite} {Graphs}}, journal = {Discussiones Mathematicae Graph Theory}, pages = {559}, publisher = {mathdoc}, volume = {33}, number = {3}, year = {2013}, zbl = {1275.05045}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_3_267689/} }
TY - JOUR AU - Ján Katrenič AU - Gabriel Semanišin TI - Maximum Semi-Matching Problem in Bipartite Graphs JO - Discussiones Mathematicae Graph Theory PY - 2013 SP - 559 VL - 33 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_3_267689/ LA - en ID - DMGT_2013__33_3_267689 ER -
Ján Katrenič; Gabriel Semanišin. Maximum Semi-Matching Problem in Bipartite Graphs. Discussiones Mathematicae Graph Theory, Tome 33 (2013) no. 3, p. 559. https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_3_267689/