Strong Equality Between the Roman Domination and Independent Roman Domination Numbers in Trees
Discussiones Mathematicae Graph Theory, Tome 33 (2013) no. 2, p. 337.

Voir la notice de l'article dans European Digital Mathematics Library

A Roman dominating function (RDF) on a graph G = (V,E) is a function f : V −→ {0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of an RDF is the value f(V (G)) = P u2V (G) f(u). An RDF f in a graph G is independent if no two vertices assigned positive values are adjacent. The Roman domination number R(G) (respectively, the independent Roman domination number iR(G)) is the minimum weight of an RDF (respectively, independent RDF) on G. We say that R(G) strongly equals iR(G), denoted by R(G) ≡ iR(G), if every RDF on G of minimum weight is independent. In this paper we provide a constructive characterization of trees T with R(T) ≡ iR(T).
Classification : 05C05, 05C69
Mots-clés : Roman domination, independent Roman domination, strong equality, trees
@article{DMGT_2013__33_2_268140,
     author = {Mustapha Chellali and Nader Jafari Rad},
     title = {Strong {Equality} {Between} the {Roman} {Domination} and {Independent} {Roman} {Domination} {Numbers} in {Trees}},
     journal = {Discussiones Mathematicae Graph Theory},
     pages = {337},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {2013},
     zbl = {1293.05258},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_2_268140/}
}
TY  - JOUR
AU  - Mustapha Chellali
AU  - Nader Jafari Rad
TI  - Strong Equality Between the Roman Domination and Independent Roman Domination Numbers in Trees
JO  - Discussiones Mathematicae Graph Theory
PY  - 2013
SP  - 337
VL  - 33
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_2_268140/
LA  - en
ID  - DMGT_2013__33_2_268140
ER  - 
%0 Journal Article
%A Mustapha Chellali
%A Nader Jafari Rad
%T Strong Equality Between the Roman Domination and Independent Roman Domination Numbers in Trees
%J Discussiones Mathematicae Graph Theory
%D 2013
%P 337
%V 33
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_2_268140/
%G en
%F DMGT_2013__33_2_268140
Mustapha Chellali; Nader Jafari Rad. Strong Equality Between the Roman Domination and Independent Roman Domination Numbers in Trees. Discussiones Mathematicae Graph Theory, Tome 33 (2013) no. 2, p. 337. https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_2_268140/