Star Coloring of Subcubic Graphs
Discussiones Mathematicae Graph Theory, Tome 33 (2013) no. 2, p. 373.
Voir la notice de l'article dans European Digital Mathematics Library
A star coloring of an undirected graph G is a coloring of the vertices of G such that (i) no two adjacent vertices receive the same color, and (ii) no path on 4 vertices is bi-colored. The star chromatic number of G, χs(G), is the minimum number of colors needed to star color G. In this paper, we show that if a graph G is either non-regular subcubic or cubic with girth at least 6, then χs(G) ≤ 6, and the bound can be realized in linear time.
@article{DMGT_2013__33_2_268043, author = {T. Karthick and C.R. Subramanian}, title = {Star {Coloring} of {Subcubic} {Graphs}}, journal = {Discussiones Mathematicae Graph Theory}, pages = {373}, publisher = {mathdoc}, volume = {33}, number = {2}, year = {2013}, zbl = {1293.05110}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_2_268043/} }
T. Karthick; C.R. Subramanian. Star Coloring of Subcubic Graphs. Discussiones Mathematicae Graph Theory, Tome 33 (2013) no. 2, p. 373. https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_2_268043/