Star Coloring of Subcubic Graphs
Discussiones Mathematicae Graph Theory, Tome 33 (2013) no. 2, p. 373.

Voir la notice de l'article dans European Digital Mathematics Library

A star coloring of an undirected graph G is a coloring of the vertices of G such that (i) no two adjacent vertices receive the same color, and (ii) no path on 4 vertices is bi-colored. The star chromatic number of G, χs(G), is the minimum number of colors needed to star color G. In this paper, we show that if a graph G is either non-regular subcubic or cubic with girth at least 6, then χs(G) ≤ 6, and the bound can be realized in linear time.
Classification : 05C15, 05C85
Mots-clés : vertex coloring, star coloring, subcubic graphs
@article{DMGT_2013__33_2_268043,
     author = {T. Karthick and C.R. Subramanian},
     title = {Star {Coloring} of {Subcubic} {Graphs}},
     journal = {Discussiones Mathematicae Graph Theory},
     pages = {373},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {2013},
     zbl = {1293.05110},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_2_268043/}
}
TY  - JOUR
AU  - T. Karthick
AU  - C.R. Subramanian
TI  - Star Coloring of Subcubic Graphs
JO  - Discussiones Mathematicae Graph Theory
PY  - 2013
SP  - 373
VL  - 33
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_2_268043/
LA  - en
ID  - DMGT_2013__33_2_268043
ER  - 
%0 Journal Article
%A T. Karthick
%A C.R. Subramanian
%T Star Coloring of Subcubic Graphs
%J Discussiones Mathematicae Graph Theory
%D 2013
%P 373
%V 33
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_2_268043/
%G en
%F DMGT_2013__33_2_268043
T. Karthick; C.R. Subramanian. Star Coloring of Subcubic Graphs. Discussiones Mathematicae Graph Theory, Tome 33 (2013) no. 2, p. 373. https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_2_268043/