The Path-Distance-Width of Hypercubes
Discussiones Mathematicae Graph Theory, Tome 33 (2013) no. 2, p. 467.

Voir la notice de l'article dans European Digital Mathematics Library

The path-distance-width of a connected graph G is the minimum integer w satisfying that there is a nonempty subset of S ⊆ V (G) such that the number of the vertices with distance i from S is at most w for any nonnegative integer i. In this note, we determine the path-distance-width of hypercubes.
Classification : 05C12, 05C65, 05C76
Mots-clés : path-distance-width, hypercube
@article{DMGT_2013__33_2_267889,
     author = {Yota Otachi},
     title = {The {Path-Distance-Width} of {Hypercubes}},
     journal = {Discussiones Mathematicae Graph Theory},
     pages = {467},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {2013},
     zbl = {1293.05086},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_2_267889/}
}
TY  - JOUR
AU  - Yota Otachi
TI  - The Path-Distance-Width of Hypercubes
JO  - Discussiones Mathematicae Graph Theory
PY  - 2013
SP  - 467
VL  - 33
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_2_267889/
LA  - en
ID  - DMGT_2013__33_2_267889
ER  - 
%0 Journal Article
%A Yota Otachi
%T The Path-Distance-Width of Hypercubes
%J Discussiones Mathematicae Graph Theory
%D 2013
%P 467
%V 33
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_2_267889/
%G en
%F DMGT_2013__33_2_267889
Yota Otachi. The Path-Distance-Width of Hypercubes. Discussiones Mathematicae Graph Theory, Tome 33 (2013) no. 2, p. 467. https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_2_267889/