The Path-Distance-Width of Hypercubes
Discussiones Mathematicae Graph Theory, Tome 33 (2013) no. 2, p. 467.
Voir la notice de l'article dans European Digital Mathematics Library
The path-distance-width of a connected graph G is the minimum integer w satisfying that there is a nonempty subset of S ⊆ V (G) such that the number of the vertices with distance i from S is at most w for any nonnegative integer i. In this note, we determine the path-distance-width of hypercubes.
@article{DMGT_2013__33_2_267889, author = {Yota Otachi}, title = {The {Path-Distance-Width} of {Hypercubes}}, journal = {Discussiones Mathematicae Graph Theory}, pages = {467}, publisher = {mathdoc}, volume = {33}, number = {2}, year = {2013}, zbl = {1293.05086}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_2_267889/} }
Yota Otachi. The Path-Distance-Width of Hypercubes. Discussiones Mathematicae Graph Theory, Tome 33 (2013) no. 2, p. 467. https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_2_267889/