Exact Expectation and Variance of Minimal Basis of Random Matroids
Discussiones Mathematicae Graph Theory, Tome 33 (2013) no. 2, p. 277.

Voir la notice de l'article dans European Digital Mathematics Library

We formulate and prove a formula to compute the expected value of the minimal random basis of an arbitrary finite matroid whose elements are assigned weights which are independent and uniformly distributed on the interval [0, 1]. This method yields an exact formula in terms of the Tutte polynomial. We give a simple formula to find the minimal random basis of the projective geometry PG(r − 1, q).
Classification : 05C31, 05C80, 05B35
Mots-clés : minimal basis, q-analog, finite projective geometry, Tutte polynomial, -analog
@article{DMGT_2013__33_2_267680,
     author = {Wojciech Kordecki and Anna Lyczkowska-Han\'ckowiak},
     title = {Exact {Expectation} and {Variance} of {Minimal} {Basis} of {Random} {Matroids}},
     journal = {Discussiones Mathematicae Graph Theory},
     pages = {277},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {2013},
     zbl = {1294.05048},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_2_267680/}
}
TY  - JOUR
AU  - Wojciech Kordecki
AU  - Anna Lyczkowska-Hanćkowiak
TI  - Exact Expectation and Variance of Minimal Basis of Random Matroids
JO  - Discussiones Mathematicae Graph Theory
PY  - 2013
SP  - 277
VL  - 33
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_2_267680/
LA  - en
ID  - DMGT_2013__33_2_267680
ER  - 
%0 Journal Article
%A Wojciech Kordecki
%A Anna Lyczkowska-Hanćkowiak
%T Exact Expectation and Variance of Minimal Basis of Random Matroids
%J Discussiones Mathematicae Graph Theory
%D 2013
%P 277
%V 33
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_2_267680/
%G en
%F DMGT_2013__33_2_267680
Wojciech Kordecki; Anna Lyczkowska-Hanćkowiak. Exact Expectation and Variance of Minimal Basis of Random Matroids. Discussiones Mathematicae Graph Theory, Tome 33 (2013) no. 2, p. 277. https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_2_267680/