A Characterization of Trees for a New Lower Bound on the K-Independence Number
Discussiones Mathematicae Graph Theory, Tome 33 (2013) no. 2, p. 395.
Voir la notice de l'article dans European Digital Mathematics Library
Let k be a positive integer and G = (V,E) a graph of order n. A subset S of V is a k-independent set of G if the maximum degree of the subgraph induced by the vertices of S is less or equal to k − 1. The maximum cardinality of a k-independent set of G is the k-independence number βk(G). In this paper, we show that for every graph [xxx], where χ(G), s(G) and Lv are the chromatic number, the number of supports vertices and the number of leaves neighbors of v, in the graph G, respectively. Moreover, we characterize extremal trees attaining these bounds.
@article{DMGT_2013__33_2_267566, author = {Nac\'era Meddah and Mostafa Blidia}, title = {A {Characterization} of {Trees} for a {New} {Lower} {Bound} on the {K-Independence} {Number}}, journal = {Discussiones Mathematicae Graph Theory}, pages = {395}, publisher = {mathdoc}, volume = {33}, number = {2}, year = {2013}, zbl = {1293.05269}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_2_267566/} }
TY - JOUR AU - Nacéra Meddah AU - Mostafa Blidia TI - A Characterization of Trees for a New Lower Bound on the K-Independence Number JO - Discussiones Mathematicae Graph Theory PY - 2013 SP - 395 VL - 33 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_2_267566/ LA - en ID - DMGT_2013__33_2_267566 ER -
%0 Journal Article %A Nacéra Meddah %A Mostafa Blidia %T A Characterization of Trees for a New Lower Bound on the K-Independence Number %J Discussiones Mathematicae Graph Theory %D 2013 %P 395 %V 33 %N 2 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_2_267566/ %G en %F DMGT_2013__33_2_267566
Nacéra Meddah; Mostafa Blidia. A Characterization of Trees for a New Lower Bound on the K-Independence Number. Discussiones Mathematicae Graph Theory, Tome 33 (2013) no. 2, p. 395. https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_2_267566/