Universality for and in Induced-Hereditary Graph Properties
Discussiones Mathematicae Graph Theory, Tome 33 (2013) no. 1, p. 33.

Voir la notice de l'article dans European Digital Mathematics Library

The well-known Rado graph R is universal in the set of all countable graphs I, since every countable graph is an induced subgraph of R. We study universality in I and, using R, show the existence of 2 א0 pairwise non-isomorphic graphs which are universal in I and denumerably many other universal graphs in I with prescribed attributes. Then we contrast universality for and universality in induced-hereditary properties of graphs and show that the overwhelming majority of induced-hereditary properties contain no universal graphs. This is made precise by showing that there are 2(2א0 ) properties in the lattice K ≤ of induced-hereditary properties of which only at most 2א0 contain universal graphs. In a final section we discuss the outlook on future work; in particular the question of characterizing those induced-hereditary properties for which there is a universal graph in the property.
Classification : 05C30, 05C63
Mots-clés : countable graph, universal graph, induced-hereditary property
@article{DMGT_2013__33_1_267920,
     author = {Izak Broere and Johannes Heidema},
     title = {Universality for and in {Induced-Hereditary} {Graph} {Properties}},
     journal = {Discussiones Mathematicae Graph Theory},
     pages = {33},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {2013},
     zbl = {1291.05138},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_1_267920/}
}
TY  - JOUR
AU  - Izak Broere
AU  - Johannes Heidema
TI  - Universality for and in Induced-Hereditary Graph Properties
JO  - Discussiones Mathematicae Graph Theory
PY  - 2013
SP  - 33
VL  - 33
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_1_267920/
LA  - en
ID  - DMGT_2013__33_1_267920
ER  - 
%0 Journal Article
%A Izak Broere
%A Johannes Heidema
%T Universality for and in Induced-Hereditary Graph Properties
%J Discussiones Mathematicae Graph Theory
%D 2013
%P 33
%V 33
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_1_267920/
%G en
%F DMGT_2013__33_1_267920
Izak Broere; Johannes Heidema. Universality for and in Induced-Hereditary Graph Properties. Discussiones Mathematicae Graph Theory, Tome 33 (2013) no. 1, p. 33. https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_1_267920/