Coloring Some Finite Sets in ℝn
Discussiones Mathematicae Graph Theory, Tome 33 (2013) no. 1, p. 25.
Voir la notice de l'article dans European Digital Mathematics Library
This note relates to bounds on the chromatic number χ(ℝn) of the Euclidean space, which is the minimum number of colors needed to color all the points in ℝn so that any two points at the distance 1 receive different colors. In [6] a sequence of graphs Gn in ℝn was introduced showing that . For many years, this bound has been remaining the best known bound for the chromatic numbers of some lowdimensional spaces. Here we prove that and find an exact formula for the chromatic number in the case of n = 2k and n = 2k − 1.
@article{DMGT_2013__33_1_267832, author = {J\'ozsef Balogh and Alexandr Kostochka and Andrei Raigorodskii}, title = {Coloring {Some} {Finite} {Sets} in {\ensuremath{\mathbb{R}}n}}, journal = {Discussiones Mathematicae Graph Theory}, pages = {25}, publisher = {mathdoc}, volume = {33}, number = {1}, year = {2013}, zbl = {1296.05066}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_1_267832/} }
TY - JOUR AU - József Balogh AU - Alexandr Kostochka AU - Andrei Raigorodskii TI - Coloring Some Finite Sets in ℝn JO - Discussiones Mathematicae Graph Theory PY - 2013 SP - 25 VL - 33 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_1_267832/ LA - en ID - DMGT_2013__33_1_267832 ER -
József Balogh; Alexandr Kostochka; Andrei Raigorodskii. Coloring Some Finite Sets in ℝn. Discussiones Mathematicae Graph Theory, Tome 33 (2013) no. 1, p. 25. https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_1_267832/