On the Non-(p−1)-Partite Kp-Free Graphs
Discussiones Mathematicae Graph Theory, Tome 33 (2013) no. 1, p. 9.

Voir la notice de l'article dans European Digital Mathematics Library

We say that a graph G is maximal Kp-free if G does not contain Kp but if we add any new edge e ∈ E(G) to G, then the graph G + e contains Kp. We study the minimum and maximum size of non-(p − 1)-partite maximal Kp-free graphs with n vertices. We also answer the interpolation question: for which values of n and m are there any n-vertex maximal Kp-free graphs of size m?
Classification : 05C35
Mots-clés : extremal problems, maximal Kp-free graphs, Kp-saturated graphs, maximal -free graphs, -saturated graphs
@article{DMGT_2013__33_1_267782,
     author = {Kinnari Amin and Jill Faudree and Ronald J. Gould and El\.zbieta Sidorowicz},
     title = {On the {Non-(p\ensuremath{-}1)-Partite} {Kp-Free} {Graphs}},
     journal = {Discussiones Mathematicae Graph Theory},
     pages = {9},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {2013},
     zbl = {1291.05095},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_1_267782/}
}
TY  - JOUR
AU  - Kinnari Amin
AU  - Jill Faudree
AU  - Ronald J. Gould
AU  - Elżbieta Sidorowicz
TI  - On the Non-(p−1)-Partite Kp-Free Graphs
JO  - Discussiones Mathematicae Graph Theory
PY  - 2013
SP  - 9
VL  - 33
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_1_267782/
LA  - en
ID  - DMGT_2013__33_1_267782
ER  - 
%0 Journal Article
%A Kinnari Amin
%A Jill Faudree
%A Ronald J. Gould
%A Elżbieta Sidorowicz
%T On the Non-(p−1)-Partite Kp-Free Graphs
%J Discussiones Mathematicae Graph Theory
%D 2013
%P 9
%V 33
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_1_267782/
%G en
%F DMGT_2013__33_1_267782
Kinnari Amin; Jill Faudree; Ronald J. Gould; Elżbieta Sidorowicz. On the Non-(p−1)-Partite Kp-Free Graphs. Discussiones Mathematicae Graph Theory, Tome 33 (2013) no. 1, p. 9. https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_1_267782/