Rainbow Connection In Sparse Graphs
Discussiones Mathematicae Graph Theory, Tome 33 (2013) no. 1, p. 181.

Voir la notice de l'article dans European Digital Mathematics Library

An edge-coloured connected graph G = (V,E) is called rainbow-connected if each pair of distinct vertices of G is connected by a path whose edges have distinct colours. The rainbow connection number of G, denoted by rc(G), is the minimum number of colours such that G is rainbow-connected. In this paper we prove that rc(G) ≤ k if |V (G)| = n and for all integers n and k with n − 6 ≤ k ≤ n − 3. We also show that this bound is tight.
Classification : 05C15
Mots-clés : rainbow-connected graph, rainbow colouring, rainbow connection number
@article{DMGT_2013__33_1_267722,
     author = {Arnfried Kemnitz and Jakub Przyby{\l}o and Ingo Schiermeyer and Mariusz Wo\'zniak},
     title = {Rainbow {Connection} {In} {Sparse} {Graphs}},
     journal = {Discussiones Mathematicae Graph Theory},
     pages = {181},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {2013},
     zbl = {1291.05069},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_1_267722/}
}
TY  - JOUR
AU  - Arnfried Kemnitz
AU  - Jakub Przybyło
AU  - Ingo Schiermeyer
AU  - Mariusz Woźniak
TI  - Rainbow Connection In Sparse Graphs
JO  - Discussiones Mathematicae Graph Theory
PY  - 2013
SP  - 181
VL  - 33
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_1_267722/
LA  - en
ID  - DMGT_2013__33_1_267722
ER  - 
%0 Journal Article
%A Arnfried Kemnitz
%A Jakub Przybyło
%A Ingo Schiermeyer
%A Mariusz Woźniak
%T Rainbow Connection In Sparse Graphs
%J Discussiones Mathematicae Graph Theory
%D 2013
%P 181
%V 33
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_1_267722/
%G en
%F DMGT_2013__33_1_267722
Arnfried Kemnitz; Jakub Przybyło; Ingo Schiermeyer; Mariusz Woźniak. Rainbow Connection In Sparse Graphs. Discussiones Mathematicae Graph Theory, Tome 33 (2013) no. 1, p. 181. https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_1_267722/