Choice-Perfect Graphs
Discussiones Mathematicae Graph Theory, Tome 33 (2013) no. 1, p. 231.

Voir la notice de l'article dans European Digital Mathematics Library

Given a graph G = (V,E) and a set Lv of admissible colors for each vertex v ∈ V (termed the list at v), a list coloring of G is a (proper) vertex coloring ϕ : V → S v2V Lv such that ϕ(v) ∈ Lv for all v ∈ V and ϕ(u) 6= ϕ(v) for all uv ∈ E. If such a ϕ exists, G is said to be list colorable. The choice number of G is the smallest natural number k for which G is list colorable whenever each list contains at least k colors. In this note we initiate the study of graphs in which the choice number equals the clique number or the chromatic number in every induced subgraph. We call them choice-ω-perfect and choice-χ-perfect graphs, respectively. The main result of the paper states that the square of every cycle is choice-χ-perfect.
Classification : 05C15, 05C17, 05C75
Mots-clés : graph coloring, list coloring, choice-perfect graph
@article{DMGT_2013__33_1_267681,
     author = {Zsolt Tuza},
     title = {Choice-Perfect {Graphs}},
     journal = {Discussiones Mathematicae Graph Theory},
     pages = {231},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {2013},
     zbl = {1293.05128},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_1_267681/}
}
TY  - JOUR
AU  - Zsolt Tuza
TI  - Choice-Perfect Graphs
JO  - Discussiones Mathematicae Graph Theory
PY  - 2013
SP  - 231
VL  - 33
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_1_267681/
LA  - en
ID  - DMGT_2013__33_1_267681
ER  - 
%0 Journal Article
%A Zsolt Tuza
%T Choice-Perfect Graphs
%J Discussiones Mathematicae Graph Theory
%D 2013
%P 231
%V 33
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_1_267681/
%G en
%F DMGT_2013__33_1_267681
Zsolt Tuza. Choice-Perfect Graphs. Discussiones Mathematicae Graph Theory, Tome 33 (2013) no. 1, p. 231. https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_1_267681/