A Note on Barnette’s Conjecture
Discussiones Mathematicae Graph Theory, Tome 33 (2013) no. 1, p. 133.

Voir la notice de l'article dans European Digital Mathematics Library

Barnette conjectured that each planar, bipartite, cubic, and 3-connected graph is hamiltonian. We prove that this conjecture is equivalent to the statement that there is a constant c > 0 such that each graph G of this class contains a path on at least c|V (G)| vertices.
Classification : 05C10, 05C38, 05C40, 05C45
Mots-clés : planar graph, Hamilton cycle, Barnette’s Conjecture, Barnette's conjecture
@article{DMGT_2013__33_1_267635,
     author = {Jochen Harant},
     title = {A {Note} on {Barnette{\textquoteright}s} {Conjecture}},
     journal = {Discussiones Mathematicae Graph Theory},
     pages = {133},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {2013},
     zbl = {1291.05107},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_1_267635/}
}
TY  - JOUR
AU  - Jochen Harant
TI  - A Note on Barnette’s Conjecture
JO  - Discussiones Mathematicae Graph Theory
PY  - 2013
SP  - 133
VL  - 33
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_1_267635/
LA  - en
ID  - DMGT_2013__33_1_267635
ER  - 
%0 Journal Article
%A Jochen Harant
%T A Note on Barnette’s Conjecture
%J Discussiones Mathematicae Graph Theory
%D 2013
%P 133
%V 33
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_1_267635/
%G en
%F DMGT_2013__33_1_267635
Jochen Harant. A Note on Barnette’s Conjecture. Discussiones Mathematicae Graph Theory, Tome 33 (2013) no. 1, p. 133. https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_1_267635/