On Minimum (Kq, K) Stable Graphs
Discussiones Mathematicae Graph Theory, Tome 33 (2013) no. 1, p. 101.
Voir la notice de l'article dans European Digital Mathematics Library
A graph G is a (Kq, k) stable graph (q ≥ 3) if it contains a Kq after deleting any subset of k vertices (k ≥ 0). Andrzej ˙ Zak in the paper On (Kq; k)-stable graphs, ( doi:/10.1002/jgt.21705) has proved a conjecture of Dudek, Szyma´nski and Zwonek stating that for sufficiently large k the number of edges of a minimum (Kq, k) stable graph is (2q − 3)(k + 1) and that such a graph is isomorphic to sK2q−2 + tK2q−3 where s and t are integers such that s(q − 1) + t(q − 2) − 1 = k. We have proved (Fouquet et al. On (Kq, k) stable graphs with small k, Elektron. J. Combin. 19 (2012) #P50) that for q ≥ 5 and k ≤ q 2 +1 the graph Kq+k is the unique minimum (Kq, k) stable graph. In the present paper we are interested in the (Kq, k(q)) stable graphs of minimum size where k(q) is the maximum value for which for every nonnegative integer k
@article{DMGT_2013__33_1_267619, author = {J.L. Fouquet and H. Thuillier and J.M. Vanherpe and A.P. Wojda}, title = {On {Minimum} {(Kq,} {K)} {Stable} {Graphs}}, journal = {Discussiones Mathematicae Graph Theory}, pages = {101}, publisher = {mathdoc}, volume = {33}, number = {1}, year = {2013}, zbl = {1291.05097}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_1_267619/} }
TY - JOUR AU - J.L. Fouquet AU - H. Thuillier AU - J.M. Vanherpe AU - A.P. Wojda TI - On Minimum (Kq, K) Stable Graphs JO - Discussiones Mathematicae Graph Theory PY - 2013 SP - 101 VL - 33 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_1_267619/ LA - en ID - DMGT_2013__33_1_267619 ER -
J.L. Fouquet; H. Thuillier; J.M. Vanherpe; A.P. Wojda. On Minimum (Kq, K) Stable Graphs. Discussiones Mathematicae Graph Theory, Tome 33 (2013) no. 1, p. 101. https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_1_267619/