On Minimum (Kq, K) Stable Graphs
Discussiones Mathematicae Graph Theory, Tome 33 (2013) no. 1, p. 101.

Voir la notice de l'article dans European Digital Mathematics Library

A graph G is a (Kq, k) stable graph (q ≥ 3) if it contains a Kq after deleting any subset of k vertices (k ≥ 0). Andrzej ˙ Zak in the paper On (Kq; k)-stable graphs, ( doi:/10.1002/jgt.21705) has proved a conjecture of Dudek, Szyma´nski and Zwonek stating that for sufficiently large k the number of edges of a minimum (Kq, k) stable graph is (2q − 3)(k + 1) and that such a graph is isomorphic to sK2q−2 + tK2q−3 where s and t are integers such that s(q − 1) + t(q − 2) − 1 = k. We have proved (Fouquet et al. On (Kq, k) stable graphs with small k, Elektron. J. Combin. 19 (2012) #P50) that for q ≥ 5 and k ≤ q 2 +1 the graph Kq+k is the unique minimum (Kq, k) stable graph. In the present paper we are interested in the (Kq, k(q)) stable graphs of minimum size where k(q) is the maximum value for which for every nonnegative integer k
Classification : 05C35, 05C75
Mots-clés : stable graphs
@article{DMGT_2013__33_1_267619,
     author = {J.L. Fouquet and H. Thuillier and J.M. Vanherpe and A.P. Wojda},
     title = {On {Minimum} {(Kq,} {K)} {Stable} {Graphs}},
     journal = {Discussiones Mathematicae Graph Theory},
     pages = {101},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {2013},
     zbl = {1291.05097},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_1_267619/}
}
TY  - JOUR
AU  - J.L. Fouquet
AU  - H. Thuillier
AU  - J.M. Vanherpe
AU  - A.P. Wojda
TI  - On Minimum (Kq, K) Stable Graphs
JO  - Discussiones Mathematicae Graph Theory
PY  - 2013
SP  - 101
VL  - 33
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_1_267619/
LA  - en
ID  - DMGT_2013__33_1_267619
ER  - 
%0 Journal Article
%A J.L. Fouquet
%A H. Thuillier
%A J.M. Vanherpe
%A A.P. Wojda
%T On Minimum (Kq, K) Stable Graphs
%J Discussiones Mathematicae Graph Theory
%D 2013
%P 101
%V 33
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_1_267619/
%G en
%F DMGT_2013__33_1_267619
J.L. Fouquet; H. Thuillier; J.M. Vanherpe; A.P. Wojda. On Minimum (Kq, K) Stable Graphs. Discussiones Mathematicae Graph Theory, Tome 33 (2013) no. 1, p. 101. https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_1_267619/