When is an Incomplete 3 × n Latin Rectangle Completable?
Discussiones Mathematicae Graph Theory, Tome 33 (2013) no. 1, p. 57.
Voir la notice de l'article dans European Digital Mathematics Library
We use the concept of an availability matrix, introduced in Euler [7], to describe the family of all minimal incomplete 3 × n latin rectangles that are not completable. We also present a complete description of minimal incomplete such latin squares of order 4.
Classification :
05C65, 05B15
Mots-clés : incomplete latin rectangle, completability, solution space enumeration, branch-and-bound, incomplete Latin rectangle
Mots-clés : incomplete latin rectangle, completability, solution space enumeration, branch-and-bound, incomplete Latin rectangle
@article{DMGT_2013__33_1_267599, author = {Reinhardt Euler and Pawe{\l} Oleksik}, title = {When is an {Incomplete} 3 {\texttimes} n {Latin} {Rectangle} {Completable?}}, journal = {Discussiones Mathematicae Graph Theory}, pages = {57}, publisher = {mathdoc}, volume = {33}, number = {1}, year = {2013}, zbl = {1290.05040}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_1_267599/} }
TY - JOUR AU - Reinhardt Euler AU - Paweł Oleksik TI - When is an Incomplete 3 × n Latin Rectangle Completable? JO - Discussiones Mathematicae Graph Theory PY - 2013 SP - 57 VL - 33 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_1_267599/ LA - en ID - DMGT_2013__33_1_267599 ER -
Reinhardt Euler; Paweł Oleksik. When is an Incomplete 3 × n Latin Rectangle Completable?. Discussiones Mathematicae Graph Theory, Tome 33 (2013) no. 1, p. 57. https://geodesic-test.mathdoc.fr/item/DMGT_2013__33_1_267599/