Iterated neighborhood graphs
Discussiones Mathematicae Graph Theory, Tome 32 (2012) no. 3, p. 403.

Voir la notice de l'article dans European Digital Mathematics Library

The neighborhood graph N(G) of a simple undirected graph G = (V,E) is the graph ( V , E N ) where E N = a,b | a ≠ b, x,a ∈ E and x,b ∈ E for some x ∈ V. It is well-known that the neighborhood graph N(G) is connected if and only if the graph G is connected and non-bipartite. We present some results concerning the k-iterated neighborhood graph N k ( G ) : = N ( N ( . . . N ( G ) ) ) of G. In particular we investigate conditions for G and k such that N k ( G ) becomes a complete graph.
Classification : 05C12, 05C76
Mots-clés : neighborhood graph, 2-step graph, neighborhood completeness number
@article{DMGT_2012__32_3_270787,
     author = {Martin Sonntag and Hanns-Martin Teichert},
     title = {Iterated neighborhood graphs},
     journal = {Discussiones Mathematicae Graph Theory},
     pages = {403},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {2012},
     zbl = {1257.05143},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/DMGT_2012__32_3_270787/}
}
TY  - JOUR
AU  - Martin Sonntag
AU  - Hanns-Martin Teichert
TI  - Iterated neighborhood graphs
JO  - Discussiones Mathematicae Graph Theory
PY  - 2012
SP  - 403
VL  - 32
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/DMGT_2012__32_3_270787/
LA  - en
ID  - DMGT_2012__32_3_270787
ER  - 
%0 Journal Article
%A Martin Sonntag
%A Hanns-Martin Teichert
%T Iterated neighborhood graphs
%J Discussiones Mathematicae Graph Theory
%D 2012
%P 403
%V 32
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/DMGT_2012__32_3_270787/
%G en
%F DMGT_2012__32_3_270787
Martin Sonntag; Hanns-Martin Teichert. Iterated neighborhood graphs. Discussiones Mathematicae Graph Theory, Tome 32 (2012) no. 3, p. 403. https://geodesic-test.mathdoc.fr/item/DMGT_2012__32_3_270787/