On a family of cubic graphs containing the flower snarks
Discussiones Mathematicae Graph Theory, Tome 30 (2010) no. 2, p. 289.

Voir la notice de l'article dans European Digital Mathematics Library

We consider cubic graphs formed with k ≥ 2 disjoint claws C i K 1 , 3 (0 ≤ i ≤ k-1) such that for every integer i modulo k the three vertices of degree 1 of C i are joined to the three vertices of degree 1 of C i - 1 and joined to the three vertices of degree 1 of C i + 1 . Denote by t i the vertex of degree 3 of C i and by T the set t ₁ , t ₂ , . . . , t k - 1 . In such a way we construct three distinct graphs, namely FS(1,k), FS(2,k) and FS(3,k). The graph FS(j,k) (j ∈ 1,2,3) is the graph where the set of vertices ⋃ i = 0 i = k - 1 V ( C i ) ∖ T induce j cycles (note that the graphs FS(2,2p+1), p ≥ 2, are the flower snarks defined by Isaacs [8]). We determine the number of perfect matchings of every FS(j,k). A cubic graph G is said to be 2-factor hamiltonian if every 2-factor of G is a hamiltonian cycle. We characterize the graphs FS(j,k) that are 2-factor hamiltonian (note that FS(1,3) is the “Triplex Graph” of Robertson, Seymour and Thomas [15]). A strong matching M in a graph G is a matching M such that there is no edge of E(G) connecting any two edges of M. A cubic graph having a perfect matching union of two strong matchings is said to be a Jaeger’s graph. We characterize the graphs FS(j,k) that are Jaeger’s graphs.
Classification : 05C45, 05C70
Mots-clés : cubic graph, perfect matching, strong matching, counting, hamiltonian cycle, 2-factor hamiltonian, Hamiltonian cycle, 2-factor Hamiltonian
@article{DMGT_2010__30_2_270839,
     author = {Jean-Luc Fouquet and Henri Thuillier and Jean-Marie Vanherpe},
     title = {On a family of cubic graphs containing the flower snarks},
     journal = {Discussiones Mathematicae Graph Theory},
     pages = {289},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2010},
     zbl = {1214.05116},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/DMGT_2010__30_2_270839/}
}
TY  - JOUR
AU  - Jean-Luc Fouquet
AU  - Henri Thuillier
AU  - Jean-Marie Vanherpe
TI  - On a family of cubic graphs containing the flower snarks
JO  - Discussiones Mathematicae Graph Theory
PY  - 2010
SP  - 289
VL  - 30
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/DMGT_2010__30_2_270839/
LA  - en
ID  - DMGT_2010__30_2_270839
ER  - 
%0 Journal Article
%A Jean-Luc Fouquet
%A Henri Thuillier
%A Jean-Marie Vanherpe
%T On a family of cubic graphs containing the flower snarks
%J Discussiones Mathematicae Graph Theory
%D 2010
%P 289
%V 30
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/DMGT_2010__30_2_270839/
%G en
%F DMGT_2010__30_2_270839
Jean-Luc Fouquet; Henri Thuillier; Jean-Marie Vanherpe. On a family of cubic graphs containing the flower snarks. Discussiones Mathematicae Graph Theory, Tome 30 (2010) no. 2, p. 289. https://geodesic-test.mathdoc.fr/item/DMGT_2010__30_2_270839/