A new upper bound for the chromatic number of a graph
Discussiones Mathematicae Graph Theory, Tome 27 (2007) no. 1, p. 137.

Voir la notice de l'article dans European Digital Mathematics Library

Let G be a graph of order n with clique number ω(G), chromatic number χ(G) and independence number α(G). We show that χ(G) ≤ [(n+ω+1-α)/2]. Moreover, χ(G) ≤ [(n+ω-α)/2], if either ω + α = n + 1 and G is not a split graph or α + ω = n - 1 and G contains no induced K ω + 3 - C ₅ .
Classification : 05C15, 05C69
Mots-clés : Vertex colouring, chromatic number, upper bound, vertex colouring, chromatic number upper bound, clique number
@article{DMGT_2007__27_1_270707,
     author = {Ingo Schiermeyer},
     title = {A new upper bound for the chromatic number of a graph},
     journal = {Discussiones Mathematicae Graph Theory},
     pages = {137},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2007},
     zbl = {1137.05035},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/DMGT_2007__27_1_270707/}
}
TY  - JOUR
AU  - Ingo Schiermeyer
TI  - A new upper bound for the chromatic number of a graph
JO  - Discussiones Mathematicae Graph Theory
PY  - 2007
SP  - 137
VL  - 27
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/DMGT_2007__27_1_270707/
LA  - en
ID  - DMGT_2007__27_1_270707
ER  - 
%0 Journal Article
%A Ingo Schiermeyer
%T A new upper bound for the chromatic number of a graph
%J Discussiones Mathematicae Graph Theory
%D 2007
%P 137
%V 27
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/DMGT_2007__27_1_270707/
%G en
%F DMGT_2007__27_1_270707
Ingo Schiermeyer. A new upper bound for the chromatic number of a graph. Discussiones Mathematicae Graph Theory, Tome 27 (2007) no. 1, p. 137. https://geodesic-test.mathdoc.fr/item/DMGT_2007__27_1_270707/