Wiener index of generalized stars and their quadratic line graphs
Discussiones Mathematicae Graph Theory, Tome 26 (2006) no. 1, p. 161.
Voir la notice de l'article dans European Digital Mathematics Library
The Wiener index, W, is the sum of distances between all pairs of vertices in a graph G. The quadratic line graph is defined as L(L(G)), where L(G) is the line graph of G. A generalized star S is a tree consisting of Δ ≥ 3 paths with the unique common endvertex. A relation between the Wiener index of S and of its quadratic graph is presented. It is shown that generalized stars having the property W(S) = W(L(L(S)) exist only for 4 ≤ Δ ≤ 6. Infinite families of generalized stars with this property are constructed.
Classification :
05C05, 05C12
Mots-clés : distance in a graph, Wiener index, star, iterated line graph, line graph
Mots-clés : distance in a graph, Wiener index, star, iterated line graph, line graph
@article{DMGT_2006__26_1_270582, author = {Andrey A. Dobrynin and Leonid S. Mel'nikov}, title = {Wiener index of generalized stars and their quadratic line graphs}, journal = {Discussiones Mathematicae Graph Theory}, pages = {161}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {2006}, zbl = {1102.05019}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/DMGT_2006__26_1_270582/} }
TY - JOUR AU - Andrey A. Dobrynin AU - Leonid S. Mel'nikov TI - Wiener index of generalized stars and their quadratic line graphs JO - Discussiones Mathematicae Graph Theory PY - 2006 SP - 161 VL - 26 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/DMGT_2006__26_1_270582/ LA - en ID - DMGT_2006__26_1_270582 ER -
%0 Journal Article %A Andrey A. Dobrynin %A Leonid S. Mel'nikov %T Wiener index of generalized stars and their quadratic line graphs %J Discussiones Mathematicae Graph Theory %D 2006 %P 161 %V 26 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/DMGT_2006__26_1_270582/ %G en %F DMGT_2006__26_1_270582
Andrey A. Dobrynin; Leonid S. Mel'nikov. Wiener index of generalized stars and their quadratic line graphs. Discussiones Mathematicae Graph Theory, Tome 26 (2006) no. 1, p. 161. https://geodesic-test.mathdoc.fr/item/DMGT_2006__26_1_270582/