Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2006_26_2_a0, author = {Hoffmann, Arne and Sidorowicz, El\.zbieta and Volkmann, Lutz}, title = {Extremal bipartite graphs with a unique k-factor}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {181--192}, publisher = {mathdoc}, volume = {26}, number = {2}, year = {2006}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/DMGT_2006_26_2_a0/} }
TY - JOUR AU - Hoffmann, Arne AU - Sidorowicz, Elżbieta AU - Volkmann, Lutz TI - Extremal bipartite graphs with a unique k-factor JO - Discussiones Mathematicae. Graph Theory PY - 2006 SP - 181 EP - 192 VL - 26 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/DMGT_2006_26_2_a0/ LA - en ID - DMGT_2006_26_2_a0 ER -
%0 Journal Article %A Hoffmann, Arne %A Sidorowicz, Elżbieta %A Volkmann, Lutz %T Extremal bipartite graphs with a unique k-factor %J Discussiones Mathematicae. Graph Theory %D 2006 %P 181-192 %V 26 %N 2 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/DMGT_2006_26_2_a0/ %G en %F DMGT_2006_26_2_a0
Hoffmann, Arne; Sidorowicz, Elżbieta; Volkmann, Lutz. Extremal bipartite graphs with a unique k-factor. Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 2, pp. 181-192. https://geodesic-test.mathdoc.fr/item/DMGT_2006_26_2_a0/
[1] G. Chartrand and L. Lesniak, Graphs and Digraphs 3rd edition (Chapman and Hall, London 1996).
[2] G.R.T. Hendry, Maximum graphs with a unique k-factor, J. Combin. Theory (B) 37 (1984) 53-63, doi: 10.1016/0095-8956(84)90044-3.
[3] A. Hoffmann and L. Volkmann, On unique k-factors and unique [1,k] -factors in graphs, Discrete Math. 278 (2004) 127-138, doi: 10.1016/S0012-365X(03)00248-6.
[4] P. Johann, On the structure of graphs with a unique k-factor, J. Graph Theory 35 (2000) 227-243, doi: 10.1002/1097-0118(200012)35:4227::AID-JGT1>3.0.CO;2-D
[5] D. König, Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre, Math. Ann. 77 (1916) 453-465, doi: 10.1007/BF01456961.
[6] J. Sheehan, Graphs with exactly one hamiltonian circuit, J. Graph Theory 1 (1977) 37-43, doi: 10.1002/jgt.3190010110.
[7] L. Volkmann, The maximum size of graphs with a unique k-factor, Combinatorica 24 (2004) 531-540, doi: 10.1007/s00493-004-0032-9.