Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2004_24_1_a11, author = {Hung, Ruo-Wei and Chang, Maw-Shang}, title = {A simple linear algorithm for the connected domination problem in circular-arc graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {137--145}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2004}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/DMGT_2004_24_1_a11/} }
TY - JOUR AU - Hung, Ruo-Wei AU - Chang, Maw-Shang TI - A simple linear algorithm for the connected domination problem in circular-arc graphs JO - Discussiones Mathematicae. Graph Theory PY - 2004 SP - 137 EP - 145 VL - 24 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/DMGT_2004_24_1_a11/ LA - en ID - DMGT_2004_24_1_a11 ER -
%0 Journal Article %A Hung, Ruo-Wei %A Chang, Maw-Shang %T A simple linear algorithm for the connected domination problem in circular-arc graphs %J Discussiones Mathematicae. Graph Theory %D 2004 %P 137-145 %V 24 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/DMGT_2004_24_1_a11/ %G en %F DMGT_2004_24_1_a11
Hung, Ruo-Wei; Chang, Maw-Shang. A simple linear algorithm for the connected domination problem in circular-arc graphs. Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 1, pp. 137-145. https://geodesic-test.mathdoc.fr/item/DMGT_2004_24_1_a11/
[1] M.J. Atallah, D.Z. Chen, and D.T. Lee, An optimal algorithm for shortest paths on weighted interval and circular-arc graphs, with applications, Algorithmica 14 (1995) 429-441, doi: 10.1007/BF01192049.
[2] M.S. Chang, Efficient algorithms for the domination problems on interval and circular-arc graphs, SIAM J. Comput. 27 (1998) 1671-1694, doi: 10.1137/S0097539792238431.
[3] M.S. Chang, Weighted domination of cocomparability graphs, Discrete Appl. Math. 80 (1997) 135-147, doi: 10.1016/S0166-218X(97)80001-7.
[4] D.Z. Chen, D.T. Lee, R. Sridhar, and C.N. Sekharan, Solving the all-pair shortest path query problem on interval and circular-arc graphs, Networks 31 (1998) 249-258, doi: 10.1002/(SICI)1097-0037(199807)31:4249::AID-NET5>3.0.CO;2-D
[5] E.M. Eschen and J. Spinrad, An O(n²) algorithm for circular-arc graph recognition, in: Proceedings of the 4th Annual ACM-SIAM Symposium on Discrete Algorithm SODA'93 (1993) 128-137.
[6] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (W.H. Freeman, San Francisco, CA, 1979).
[7] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs (Academic Press, New York, 1980).
[8] M.C. Golumbic and P.L. Hammer, Stability in circular arc graphs, J. Algorithms 9 (1988) 314-320, doi: 10.1016/0196-6774(88)90023-5.
[9] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).
[10] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Domination in Graphs - Advanced Topics (Marcel Dekker, New York, 1998).
[11] W.L. Hsu, O(M·N) algorithms for the recognization and isomorphism problems on circular-arc graphs, SIAM J. Comput. 24 (1995) 411-439, doi: 10.1137/S0097539793260726.
[12] W.L. Hsu and K.H. Tsai, Linear time algorithms on circular-arc graphs, Inform. Process. Lett. 40 (1991) 123-129, doi: 10.1016/0020-0190(91)90165-E.
[13] J.M. Keil, The complexity of domination problems in circle graphs, Discrete Appl. Math. 42 (1993) 51-63, doi: 10.1016/0166-218X(93)90178-Q.
[14] J.M. Keil and D. Schaefer, An optimal algorithm for finding dominating cycles in circular-arc graphs, Discrete Appl. Math. 36 (1992) 25-34, doi: 10.1016/0166-218X(92)90201-K.
[15] E. Köhler, Connected domination and dominating clique in trapezoid graphs, Discrete Appl. Math. 99 (2000) 91-110, doi: 10.1016/S0166-218X(99)00127-4.
[16] R. Laskar and J. Pfaff, Domination and irredundance in split graphs, Technical Report 430, Dept. Mathematical Sciences (Clemson University, 1983).
[17] C.C. Lee and D.T. Lee, On a circle-cover minimization problem, Inform. Process. Lett. 18 (1984) 109-115, doi: 10.1016/0020-0190(84)90033-4.
[18] Y.L. Lin, F.R. Hsu, and Y.T. Tsai, Efficient algorithms for the minimum connected domination on trapezoid graphs, Lecture Notes in Comput. Sci. 1858 (Springer Verlag, 2000) 126-136.
[19] G.K. Manacher and T.A. Mankus, A simple linear time algorithm for finding a maximum independent set of circular arcs using intervals alone, Networks 39 (2002) 68-72, doi: 10.1002/net.10014.
[20] S. Masuda and K. Nakajima, An optimal algorithm for finding a maximum independent set of a circular-arc graph, SIAM J. Comput. 17 (1988) 41-52, doi: 10.1137/0217003.
[21] R.M. McConnell, Linear-time recognition of circular-arc graphs, in: Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science FOCS'01 (2001) 386-394.
[22] M. Moscarini, Doubly chordal graphs, Steiner trees, and connected domination, Networks 23 (1993) 59-69, doi: 10.1002/net.3230230108.
[23] H. Müller and A. Brandstädt, The NP-completeness of Steiner tree and dominating set for chordal bipartite graphs, Theoret. Comput. Sci. 53 (1987) 257-265, doi: 10.1016/0304-3975(87)90067-3.
[24] J. Pfaff, R. Laskar, and S.T. Hedetniemi, NP-completeness of total and connected domination, and irredundance for bipartite graphs, Technical Report 428, Dept. Mathematical Sciences (Clemson University, 1983).
[25] A. Tucker, An efficient test for circular-arc graphs, SIAM J. Comput. 9 (1980) 1-24, doi: 10.1137/0209001.
[26] H.G. Yeh and G.J. Chang, Weighted connected domination and Steiner trees in distance-hereditary graphs, Discrete Appl. Math. 87 (1998) 245-253, doi: 10.1016/S0166-218X(98)00060-2.