Difference labelling of cacti
Discussiones Mathematicae. Graph Theory, Tome 23 (2003) no. 1, pp. 55-65.

Voir la notice de l'article provenant de la source Library of Science

A graph G is a difference graph iff there exists S ⊂ IN⁺ such that G is isomorphic to the graph DG(S) = (V,E), where V = S and E = i,j:i,j ∈ V ∧ |i-j| ∈ V.
Mots-clés : graph labelling, difference graph, cactus
@article{DMGT_2003_23_1_a3,
     author = {Sonntag, Martin},
     title = {Difference labelling of cacti},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {55--65},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2003},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/DMGT_2003_23_1_a3/}
}
TY  - JOUR
AU  - Sonntag, Martin
TI  - Difference labelling of cacti
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2003
SP  - 55
EP  - 65
VL  - 23
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/DMGT_2003_23_1_a3/
LA  - en
ID  - DMGT_2003_23_1_a3
ER  - 
%0 Journal Article
%A Sonntag, Martin
%T Difference labelling of cacti
%J Discussiones Mathematicae. Graph Theory
%D 2003
%P 55-65
%V 23
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/DMGT_2003_23_1_a3/
%G en
%F DMGT_2003_23_1_a3
Sonntag, Martin. Difference labelling of cacti. Discussiones Mathematicae. Graph Theory, Tome 23 (2003) no. 1, pp. 55-65. https://geodesic-test.mathdoc.fr/item/DMGT_2003_23_1_a3/

[1] D. Bergstrand, F. Harary, K. Hodges, G. Jennings, L. Kuklinski and J. Wiener, The sum number of a complete graph, Bull. Malaysian Math. Soc. (Second Series) 12 (1989) 25-28.

[2] D. Bergstrand, F. Harary, K. Hodges, G. Jennings, L. Kuklinski and J. Wiener, Product graphs are sum graphs, Math. Mag. 65 (1992) 262-264, doi: 10.2307/2691455.

[3] G.S. Bloom and S.A. Burr, On autographs which are complements of graphs of low degree, Caribbean J. Math. 3 (1984) 17-28.

[4] G.S. Bloom, P. Hell and H. Taylor, Collecting autographs: n-node graphs that have n-integer signatures, Annals N.Y. Acad. Sci. 319 (1979) 93-102, doi: 10.1111/j.1749-6632.1979.tb32778.x.

[5] R.B. Eggleton and S.V. Gervacio, Some properties of difference graphs, Ars Combin. 19 (A) (1985) 113-128.

[6] M.N. Ellingham, Sum graphs from trees, Ars Combin. 35 (1993) 335-349.

[7] S.V. Gervacio, Which wheels are proper autographs?, Sea Bull. Math. 7 (1983) 41-50.

[8] R.J. Gould and V. Rödl, Bounds on the number of isolated vertices in sum graphs, in: Y. Alavi, G. Chartrand, O.R. Ollermann and A.J. Schwenk, ed., Graph Theory, Combinatorics, and Applications 1 (Wiley, New York, 1991), 553-562.

[9] T. Hao, On sum graphs, J. Combin. Math. and Combin. Computing 6 (1989) 207-212.

[10] F. Harary, Sum graphs and difference graphs, Congressus Numerantium 72 (1990) 101-108.

[11] F. Harary, Sum graphs over all the integers, Discrete Math. 124 (1994) 99-105, doi: 10.1016/0012-365X(92)00054-U.

[12] F. Harary, I.R. Hentzel and D.P. Jacobs, Digitizing sum graphs over the reals, Caribb. J. Math. Comput. Sci. 1, 1 2 (1991) 1-4.

[13] N. Hartsfield and W.F. Smyth, The sum number of complete bipartite graphs, in: R. Rees, ed., Graphs and Matrices (Marcel Dekker, New York, 1992), 205-211.

[14] N. Hartsfield and W.F. Smyth, A family of sparse graphs of large sum number, Discrete Math. 141 (1995) 163-171, doi: 10.1016/0012-365X(93)E0196-B.

[15] M. Miller, J. Ryan and W.F. Smyth, The sum number of the cocktail party graph, Bull. Inst. Comb. Appl. 22 (1998) 79-90.

[16] M. Miller, Slamin, J. Ryan and W.F. Smyth, Labelling wheels for minimum sum number, J. Combin. Math. and Combin. Comput. 28 (1998) 289-297.

[17] W.F. Smyth, Sum graphs of small sum number, Coll. Math. Soc. János Bolyai, 60. (Sets, Graphs and Numbers, Budapest, 1991) 669-678.

[18] W.F. Smyth, Sum graphs: new results, new problems, Bulletin of the ICA 2 (1991) 79-81.

[19] W.F. Smyth, Addendum to: 'Sum graphs: new results, new problems', Bulletin of the ICA 3 (1991) 30.