Families of strongly projective graphs
Discussiones Mathematicae Graph Theory, Tome 22 (2002) no. 2, p. 271.

Voir la notice de l'article dans European Digital Mathematics Library

We give several characterisations of strongly projective graphs which generalise in many respects odd cycles and complete graphs [7]. We prove that all known families of projective graphs contain only strongly projective graphs, including complete graphs, odd cycles, Kneser graphs and non-bipartite distance-transitive graphs of diameter d ≥ 3.
Classification : 05C75, 08A30
Mots-clés : distance-transitive graphs, graph homomorphism, graph product, Strongly projective, product graph, distance-transitive
@article{DMGT_2002__22_2_270746,
     author = {Benoit Larose},
     title = {Families of strongly projective graphs},
     journal = {Discussiones Mathematicae Graph Theory},
     pages = {271},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2002},
     zbl = {1029.05133},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/DMGT_2002__22_2_270746/}
}
TY  - JOUR
AU  - Benoit Larose
TI  - Families of strongly projective graphs
JO  - Discussiones Mathematicae Graph Theory
PY  - 2002
SP  - 271
VL  - 22
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/DMGT_2002__22_2_270746/
LA  - en
ID  - DMGT_2002__22_2_270746
ER  - 
%0 Journal Article
%A Benoit Larose
%T Families of strongly projective graphs
%J Discussiones Mathematicae Graph Theory
%D 2002
%P 271
%V 22
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/DMGT_2002__22_2_270746/
%G en
%F DMGT_2002__22_2_270746
Benoit Larose. Families of strongly projective graphs. Discussiones Mathematicae Graph Theory, Tome 22 (2002) no. 2, p. 271. https://geodesic-test.mathdoc.fr/item/DMGT_2002__22_2_270746/