Minimal reducible bounds for hom-properties of graphs
Discussiones Mathematicae Graph Theory, Tome 19 (1999) no. 2, p. 143.
Voir la notice de l'article dans European Digital Mathematics Library
Let H be a fixed finite graph and let → H be a hom-property, i.e. the set of all graphs admitting a homomorphism into H. We extend the definition of → H to include certain infinite graphs H and then describe the minimal reducible bounds for → H in the lattice of additive hereditary properties and in the lattice of hereditary properties.
Classification :
05C15, 05C55, 06B05
Mots-clés : graph homomorphisms, minimal reducible bounds, additive hereditary graph property, hom-property, homomorphism, additive hereditary properties
Mots-clés : graph homomorphisms, minimal reducible bounds, additive hereditary graph property, hom-property, homomorphism, additive hereditary properties
@article{DMGT_1999__19_2_270586, author = {Amelie Berger and Izak Broere}, title = {Minimal reducible bounds for hom-properties of graphs}, journal = {Discussiones Mathematicae Graph Theory}, pages = {143}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {1999}, zbl = {0958.05051}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/DMGT_1999__19_2_270586/} }
TY - JOUR AU - Amelie Berger AU - Izak Broere TI - Minimal reducible bounds for hom-properties of graphs JO - Discussiones Mathematicae Graph Theory PY - 1999 SP - 143 VL - 19 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/DMGT_1999__19_2_270586/ LA - en ID - DMGT_1999__19_2_270586 ER -
Amelie Berger; Izak Broere. Minimal reducible bounds for hom-properties of graphs. Discussiones Mathematicae Graph Theory, Tome 19 (1999) no. 2, p. 143. https://geodesic-test.mathdoc.fr/item/DMGT_1999__19_2_270586/