On uniform convergence of Fourier-Sobolev series
Daghestan Electronic Mathematical Reports, Tome 12 (2019), pp. 55-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let {φk}k=0 be a system of functions defined on [a,b] and orthonormal in Lρ2=Lρ2(a,b) with respect to the usual inner product. For a given positive integer r, by {φr,k}k=0 we denote the system of functions orthonormal with respect to the Sobolev-type inner product and generated by the system {φk}k=0. In this paper, we study the question of the uniform convergence of the Fourier series by the system of functions {φr,k}k=0 to the functions fWLρpr in the case when the original system {φk}k=0 forms a basis in the space Lρp=Lρp(a,b) (1p, p2).
Mots-clés : Fourier series; Sobolev-type inner product; Sobolev space; Sobolev-orthonormal functions.
@article{DEMR_2019_12_a4,
     author = {T. N. Shakh-Emirov},
     title = {On uniform convergence of {Fourier-Sobolev} series},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {55--61},
     publisher = {mathdoc},
     volume = {12},
     year = {2019},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/DEMR_2019_12_a4/}
}
TY  - JOUR
AU  - T. N. Shakh-Emirov
TI  - On uniform convergence of Fourier-Sobolev series
JO  - Daghestan Electronic Mathematical Reports
PY  - 2019
SP  - 55
EP  - 61
VL  - 12
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/DEMR_2019_12_a4/
LA  - ru
ID  - DEMR_2019_12_a4
ER  - 
%0 Journal Article
%A T. N. Shakh-Emirov
%T On uniform convergence of Fourier-Sobolev series
%J Daghestan Electronic Mathematical Reports
%D 2019
%P 55-61
%V 12
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/DEMR_2019_12_a4/
%G ru
%F DEMR_2019_12_a4
T. N. Shakh-Emirov. On uniform convergence of Fourier-Sobolev series. Daghestan Electronic Mathematical Reports, Tome 12 (2019), pp. 55-61. https://geodesic-test.mathdoc.fr/item/DEMR_2019_12_a4/

[1] Marcellán F., Alfaro M., Rezola M.L., “Orthogonal polynomials on Sobolev spaces: old and new directions”, J. Comput. Appl. Math., 48:1-2 (1993), 113–131 | DOI | Zbl

[2] Meijer H.G., “Laguerre polynomials generalized to a certain discrete Sobolev inner product space”, J. Approx. Theory, 73:1 (1993), 1–16 | DOI | Zbl

[3] Kwon K.H., Littlejohn L.L., “Sobolev orthogonal polynomials and second-order differential equations”, Rocky Mountain J. Math., 28:2 (1998), 547–594 | DOI | Zbl

[4] Area I., Godoy E., Marcellán F., Moreno-Balcázar J.J., “$\Delta$-Sobolev orthogonal polynomials of Meixner type: asymptotics and limit relation”, J. Comput. Appl. Math., 178:1-2 (2005), 21–36 | DOI | Zbl

[5] Marcellán F., Xu Y., “On Sobolev orthogonal polynomials”, Expo. Math., 33:3 (2015), 308–352 | DOI | Zbl

[6] Sharapudinov I.I., Sharapudinov T.I., “Polinomy, ortogonalnye po Sobolevu, porozhdennye mnogochlenami Chebysheva, ortogonalnymi na setke”, Izv. vuzov. Matem., 33:8 (2017), 67–79.

[7] Sharapudinov I.I., Gadzhieva Z.D., “Polinomy, ortogonalnye po Sobolevu, porozhdennye mnogochlenami Meiksnera”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika., 16:3 (2016), 310–321. | Zbl

[8] Sharapudinov I.I., Gadzhieva Z.D., Gadzhimirzaev R.M., “Raznostnye uravneniya i polinomy, ortogonalnye po Sobolevu, porozhdennye mnogochlenami Meiksnera”, Vladikavk. matem. zhurn., 19:2 (2017), 58–72. | Zbl

[9] Sharapudinov I.I., Guseinov I.G., “Polinomy, ortogonalnye po Sobolevu, porozhdennye polinomami Sharle”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika., 18:2 (2018), 196–205. | Zbl

[10] Sharapudinov I.I., “Sistemy funktsii, ortogonalnye po Sobolevu, assotsiirovannye s ortogonalnoi sistemoi”, Izv. RAN. Ser. matem., 82:1 (2018), 225–258. | Zbl

[11] Sharapudinov I.I., “Ortogonalnye po Sobolevu sistemy funktsii i nekotorye ikh prilozheniya”, UMN, 74:4(448) (2019), 87–164. | Zbl

[12] Kashin B.S., Saakyan A.A., Ortogonalnye ryady, AFTs, M., 1999