Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DEMR_2019_12_a4, author = {T. N. Shakh-Emirov}, title = {On uniform convergence of {Fourier-Sobolev} series}, journal = {Daghestan Electronic Mathematical Reports}, pages = {55--61}, publisher = {mathdoc}, volume = {12}, year = {2019}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/DEMR_2019_12_a4/} }
T. N. Shakh-Emirov. On uniform convergence of Fourier-Sobolev series. Daghestan Electronic Mathematical Reports, Tome 12 (2019), pp. 55-61. https://geodesic-test.mathdoc.fr/item/DEMR_2019_12_a4/
[1] Marcellán F., Alfaro M., Rezola M.L., “Orthogonal polynomials on Sobolev spaces: old and new directions”, J. Comput. Appl. Math., 48:1-2 (1993), 113–131 | DOI | Zbl
[2] Meijer H.G., “Laguerre polynomials generalized to a certain discrete Sobolev inner product space”, J. Approx. Theory, 73:1 (1993), 1–16 | DOI | Zbl
[3] Kwon K.H., Littlejohn L.L., “Sobolev orthogonal polynomials and second-order differential equations”, Rocky Mountain J. Math., 28:2 (1998), 547–594 | DOI | Zbl
[4] Area I., Godoy E., Marcellán F., Moreno-Balcázar J.J., “$\Delta$-Sobolev orthogonal polynomials of Meixner type: asymptotics and limit relation”, J. Comput. Appl. Math., 178:1-2 (2005), 21–36 | DOI | Zbl
[5] Marcellán F., Xu Y., “On Sobolev orthogonal polynomials”, Expo. Math., 33:3 (2015), 308–352 | DOI | Zbl
[6] Sharapudinov I.I., Sharapudinov T.I., “Polinomy, ortogonalnye po Sobolevu, porozhdennye mnogochlenami Chebysheva, ortogonalnymi na setke”, Izv. vuzov. Matem., 33:8 (2017), 67–79.
[7] Sharapudinov I.I., Gadzhieva Z.D., “Polinomy, ortogonalnye po Sobolevu, porozhdennye mnogochlenami Meiksnera”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika., 16:3 (2016), 310–321. | Zbl
[8] Sharapudinov I.I., Gadzhieva Z.D., Gadzhimirzaev R.M., “Raznostnye uravneniya i polinomy, ortogonalnye po Sobolevu, porozhdennye mnogochlenami Meiksnera”, Vladikavk. matem. zhurn., 19:2 (2017), 58–72. | Zbl
[9] Sharapudinov I.I., Guseinov I.G., “Polinomy, ortogonalnye po Sobolevu, porozhdennye polinomami Sharle”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika., 18:2 (2018), 196–205. | Zbl
[10] Sharapudinov I.I., “Sistemy funktsii, ortogonalnye po Sobolevu, assotsiirovannye s ortogonalnoi sistemoi”, Izv. RAN. Ser. matem., 82:1 (2018), 225–258. | Zbl
[11] Sharapudinov I.I., “Ortogonalnye po Sobolevu sistemy funktsii i nekotorye ikh prilozheniya”, UMN, 74:4(448) (2019), 87–164. | Zbl
[12] Kashin B.S., Saakyan A.A., Ortogonalnye ryady, AFTs, M., 1999