Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DEMR_2019_12_a3, author = {Z. G. Medzhidov}, title = {Inverse of the conic transformation of a function with a power weight}, journal = {Daghestan Electronic Mathematical Reports}, pages = {43--54}, publisher = {mathdoc}, volume = {12}, year = {2019}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/DEMR_2019_12_a3/} }
Z. G. Medzhidov. Inverse of the conic transformation of a function with a power weight. Daghestan Electronic Mathematical Reports, Tome 12 (2019), pp. 43-54. https://geodesic-test.mathdoc.fr/item/DEMR_2019_12_a3/
[1] Peter Kuchment, Fatma Terzioglu, “Inversion of weighted divergent beam and cone transforms”, Inverse Problems and Imaging, 11:6 (2017), 1071–1090 | DOI | Zbl
[2] Terzioglu F., “Some inversion formulas for the cone transform”, Inverse Problems, 31:11 (2015) | DOI | Zbl
[3] Natterer F., Matematicheskie aspekty kompyuternoi tomografii, Mir, Moskva, 1990, 286 pp.
[4] Hamaker C., Smith K.T., Solmon D.C., and Wagner S.L., “The divergent beam X-ray transform”, Rocky Mountain J. Math., 10:2 (1980), 253–283 | Zbl
[5] Grangeat P., “Mathematical framework of cone-beam 3D-reconstruction via the first derivative of the Radon transform”, Lecture notes in Math, 1497, Springer, 1991, 66–97 | DOI
[6] Palamodov V., Reconstructive integral geometry, Birkhäuser Verlag, Basel, 2004 | Zbl
[7] Gelfand I. M., Goncharov A. B., “Vosstanovlenie finitnoi funktsii, iskhodya iz ee integralov po pryamym, peresekayuschim dannoe mnozhestvo tochek v prostranstve”, DAH SSSR, 290 (1986), 1037–1040
[8] Truong T. T., Nguyen M. K., “On new V-line Radon transforms in and their inversion”, J. Phys. A: Math. Theor., 44:7 (2011) | DOI | Zbl