Inverse of the conic transformation of a function with a power weight
Daghestan Electronic Mathematical Reports, Tome 12 (2019), pp. 43-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Radon transformation defined on circular cones called the conical Radon transform. In the three-dimensio-nal space R3, it maps the functions to its surface integrals over a circular cone, and in R2 to its integrals over two rays with a common vertex. In this paper, we present new formulas for inversion of k-weighted conical and X-ray Radon transformations under complete and incomplete data in R2 and R3.
Mots-clés : conical transformation, k-weighted X-ray trans-formation, Radon transformation, inversion formula.
@article{DEMR_2019_12_a3,
     author = {Z. G. Medzhidov},
     title = {Inverse of the conic transformation of a function with a power weight},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {43--54},
     publisher = {mathdoc},
     volume = {12},
     year = {2019},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/DEMR_2019_12_a3/}
}
TY  - JOUR
AU  - Z. G. Medzhidov
TI  - Inverse of the conic transformation of a function with a power weight
JO  - Daghestan Electronic Mathematical Reports
PY  - 2019
SP  - 43
EP  - 54
VL  - 12
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/DEMR_2019_12_a3/
LA  - ru
ID  - DEMR_2019_12_a3
ER  - 
%0 Journal Article
%A Z. G. Medzhidov
%T Inverse of the conic transformation of a function with a power weight
%J Daghestan Electronic Mathematical Reports
%D 2019
%P 43-54
%V 12
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/DEMR_2019_12_a3/
%G ru
%F DEMR_2019_12_a3
Z. G. Medzhidov. Inverse of the conic transformation of a function with a power weight. Daghestan Electronic Mathematical Reports, Tome 12 (2019), pp. 43-54. https://geodesic-test.mathdoc.fr/item/DEMR_2019_12_a3/

[1] Peter Kuchment, Fatma Terzioglu, “Inversion of weighted divergent beam and cone transforms”, Inverse Problems and Imaging, 11:6 (2017), 1071–1090 | DOI | Zbl

[2] Terzioglu F., “Some inversion formulas for the cone transform”, Inverse Problems, 31:11 (2015) | DOI | Zbl

[3] Natterer F., Matematicheskie aspekty kompyuternoi tomografii, Mir, Moskva, 1990, 286 pp.

[4] Hamaker C., Smith K.T., Solmon D.C., and Wagner S.L., “The divergent beam X-ray transform”, Rocky Mountain J. Math., 10:2 (1980), 253–283 | Zbl

[5] Grangeat P., “Mathematical framework of cone-beam 3D-reconstruction via the first derivative of the Radon transform”, Lecture notes in Math, 1497, Springer, 1991, 66–97 | DOI

[6] Palamodov V., Reconstructive integral geometry, Birkhäuser Verlag, Basel, 2004 | Zbl

[7] Gelfand I. M., Goncharov A. B., “Vosstanovlenie finitnoi funktsii, iskhodya iz ee integralov po pryamym, peresekayuschim dannoe mnozhestvo tochek v prostranstve”, DAH SSSR, 290 (1986), 1037–1040

[8] Truong T. T., Nguyen M. K., “On new V-line Radon transforms in and their inversion”, J. Phys. A: Math. Theor., 44:7 (2011) | DOI | Zbl