A priori estimates of the positive solution of the two-point boundary value problem for one second-order nonlinear differential equation
Daghestan Electronic Mathematical Reports, Tome 11 (2019), pp. 28-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

A priori estimates of the positive solution of the two-point boundary value problem are obtained y=f(x,y), 0, y(0)=y(1)=0 assuming that f(x,y) is continuous at x[0,1], yR and satisfies the condition a0xγypf(x,y)a1yp, where a0>0, a1>0, p>1, γ0 – constants.
Mots-clés : positive solution, a priori estimates, differential equation, two-point boundary value problem.
@article{DEMR_2019_11_a3,
     author = {E. I. Abduragimov},
     title = {A priori estimates of the positive solution of the two-point boundary value problem for one second-order nonlinear differential equation},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {28--48},
     publisher = {mathdoc},
     volume = {11},
     year = {2019},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/DEMR_2019_11_a3/}
}
TY  - JOUR
AU  - E. I. Abduragimov
TI  - A priori estimates of the positive solution of the two-point boundary value problem for one second-order nonlinear differential equation
JO  - Daghestan Electronic Mathematical Reports
PY  - 2019
SP  - 28
EP  - 48
VL  - 11
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/DEMR_2019_11_a3/
LA  - ru
ID  - DEMR_2019_11_a3
ER  - 
%0 Journal Article
%A E. I. Abduragimov
%T A priori estimates of the positive solution of the two-point boundary value problem for one second-order nonlinear differential equation
%J Daghestan Electronic Mathematical Reports
%D 2019
%P 28-48
%V 11
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/DEMR_2019_11_a3/
%G ru
%F DEMR_2019_11_a3
E. I. Abduragimov. A priori estimates of the positive solution of the two-point boundary value problem for one second-order nonlinear differential equation. Daghestan Electronic Mathematical Reports, Tome 11 (2019), pp. 28-48. https://geodesic-test.mathdoc.fr/item/DEMR_2019_11_a3/

[1] Krasnoselskii M.A., Polozhitelnye resheniya operatornykh uravnenii, Nauka, M., 1962

[2] Krasnoselskii M.A., Zabreiko P.P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975

[3] De Coster C., Habets P., Two-point boundary value problems: lower and upper solutions, Elsevier Sciens, 2005, 502 pp.

[4] Pokhozhaev S.I., “Ob odnom konstruktivnom metode variatsionnogo ischisleniya”, DAN SSSR, 298:6 (1988), 1330–1333 | Zbl

[5] Abduragimov E.I., “O edinstvennosti polozhitelnogo resheniya odnoi nelineinoi dvukhtochechnoi kraevoi zadachi”, Izv. vuzov. Matematika, 481:6 (2002), 3–6

[6] Abduragimov E.I., “Edinstvennost polozhitelnogo resheniya odnoi nelineinoi dvukhtochechnoi kraevoi zadachi i chislennyi metod ego postroeniya”, Izv. vuzov. Matematika, 438:11 (1998), 3–7

[7] Gidas B., Spruck J., “Global and local behavior of positive solutions of nonlineare elliptic equations”, Communications on Pure and Applied Mathematics, 4 (1982), 525–598

[8] Gaponenko Yu.L., “O polozhitelnykh resheniyakh nelineinykh kraevykh zadach”, Vestnik Moskovskogo universiteta, seriya 15. Vychislitelnaya matematika i kibernetika, 4 (1983), 8–12 | Zbl

[9] Mukhamadiev E., Naimov A., “K teorii dvukhtochechnykh kraevykh zadach dlya dlya differentsialnogo uravneniya vtorogo poryadka”, Differentsialnye uravneniya, 35:10 (1999), 1372–1381 | Zbl

[10] Zhang Shisheng, Wang Fan, “Existence theorems of solutions for two-point boundary value problem of second order ordinary differential equations in Banach spaces”, Aplied Mathematics and Mechanics, 17:2 (1996), 98–108

[11] Guo Dajun and Lakshmikantham V., “Multiple solution of two-point boundary value problems of ordinary differential equations in Banach spaces”, J. Math. Anal. Appl., 129 (1988), 211–222 | DOI | Zbl

[12] Lepin A.Ya., “Neobkhodimye i dostatochnye usloviya suschestvovaniya resheniya dvukhtochechnoi kraevoi zadachi dlya nelineinogo obyknovennogo differentsialnogo uravneniya vtorogo poryadka”, Differentsialnye uravneniya, 6:2 (1970), 1384–1388 | Zbl

[13] Zhang Z. and Wang J., “The upper and lower method for a class of singular nonlinear second order three-point boundary problems”, J. Comput. Appl. Math., 147 (2002), 41–52 | DOI | Zbl

[14] Meiqiang, Xuemei Zhang, Weigao Ge, “Existens theorems for a second order nonlinear differential equation with nonlocal boundary conditions”, J. Appl. Math. Comput., 33 (2010), 137–153 | DOI | Zbl

[15] Jessada Tariboon and Weerawat Studsutad, “Positive solutions of a noblinear m-point integral boundary value problems”, Aplied Mathematics and Mechanics, 6:15 (2012), 711–729 | Zbl

[16] Feng M., Ge W., “Positive solutions for a class of m-point singular boundary value problems”, Mathematical and Computer Modelling, 46:3-4 (2007), 375–383 | DOI | Zbl

[17] Guo Y., Shan W., Ge W., “Positive solutions for a second-order m-point boundary value problems”, Journal of Computational and Applied Mathematics, 151:2 (2003), 415–424 | DOI | Zbl

[18] Ma R., “Positive solutions of nonlinear m-point boundary value problem”, An International J. Comput. Math. Appl., 42 (2001), 755–765 | DOI | Zbl

[19] Nichiro Kawano, Junkichi Satsuma, Shoji Yotsutani., “On the Positive Solution of an Emden-Type Elliptic Equation”, Proceedings of the Japan Academy, 61:6 (2003), 186–189

[20] Nyamorady N., “Existence of positive solutions for third-order boundary value problems”, The journal Mathematics and Computer Science, 4:1 (2012), 8–18 | DOI