Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DEMR_2019_11_a2, author = {M. K. Ramazanov and A. K. Murtazaev}, title = {Computer simulation of phase transitions of the {Heisenberg} antiferromagnetic model}, journal = {Daghestan Electronic Mathematical Reports}, pages = {25--31}, publisher = {mathdoc}, volume = {11}, year = {2019}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/DEMR_2019_11_a2/} }
TY - JOUR AU - M. K. Ramazanov AU - A. K. Murtazaev TI - Computer simulation of phase transitions of the Heisenberg antiferromagnetic model JO - Daghestan Electronic Mathematical Reports PY - 2019 SP - 25 EP - 31 VL - 11 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/DEMR_2019_11_a2/ LA - ru ID - DEMR_2019_11_a2 ER -
%0 Journal Article %A M. K. Ramazanov %A A. K. Murtazaev %T Computer simulation of phase transitions of the Heisenberg antiferromagnetic model %J Daghestan Electronic Mathematical Reports %D 2019 %P 25-31 %V 11 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/DEMR_2019_11_a2/ %G ru %F DEMR_2019_11_a2
M. K. Ramazanov; A. K. Murtazaev. Computer simulation of phase transitions of the Heisenberg antiferromagnetic model. Daghestan Electronic Mathematical Reports, Tome 11 (2019), pp. 25-31. https://geodesic-test.mathdoc.fr/item/DEMR_2019_11_a2/
[1] Dotsenko V. S., “Critical phenomena and quenched disorder”, Phys. Usp., 38:5 (1995), 457–496 | DOI
[2] Korshunov S.E., “Phase transitions in two-dimensional systems with continuous degeneracy”, Phys. Usp., 49:3 (2006), 225–262 | DOI
[3] Ramazanov M.K., Murtazaev A.K., “Phase transitions and critical characteristics in the layered antiferromagnetic Ising model with next-nearest-neighbor intralayer interactions”, JETP Lett., 101:10 (2015), 714–718 | DOI
[4] Ramazanov M.K., Murtazaev A.K., “Fazovye perekhody i kriticheskie svoistva v antiferromagnitnoi modeli Geizenberga na sloistoi kubicheskoi reshetke”, Pisma v ZhETF, 106:2 (2017), 72–77
[5] Ramazanov M.K., Murtazaev A.K., “Investigation of critical phenomena of the frustrated Ising model on a cubic lattice with next-nearest-neighbor intralayer interactions by the Monte Carlo method”, Phase Transitions, 91:1 (2018), 83–91 | DOI
[6] Murtazaev A.K., Magomedov M.A., Ramazanov M.K., “Fazovaya diagramma i struktura osnovnogo sostoyaniya antiferromagnitnoi modeli Izinga na ob'em-no-tsentrirovannoi kubicheskoi reshetke”, Pisma v ZhETF, 107:4 (2018), 265–269
[7] Murtazaev A.K., Ramazanov M.K., Badiev M.K., “Critical properties of the two-dimensional Ising model on a square lattice with competing interactions”, Phys. B: Cond. Matt., 476 (2015), 1–5 | DOI
[8] Murtazaev A.K., Ramazanov M.K., Badiev M.K., “Phase transitions and critical phenomena in the antiferromagnetic Ising model on a layered triangular lattice”, Physica A: Statistical Mechanics and its Applications., 507 (2018), 210–218 | DOI
[9] Ramazanov M.K., Murtazaev A.K., “Kompyuternoe modelirovanie kriticheskikh svoistv frustrirovannoi modeli Izinga”, Dagestanskie elektronnye matematicheskie izvestiya, 2018, no. 9, 26–32
[10] Mitsutake A., Sugita Y., Okamoto Y., “Generalized-Ensemble Algorithms for Molecular Simulations of Biopolymers”, Biopolymers (Peptide Science), 60:2 (2001), 96–123 | 3.0.CO;2-F class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[11] Murtazaev A.K., Ramazanov M.K., Kurbanova D.R., Magomedov M.A, Badiev M.K., Mazagaeva M.K., “Issledovanie fazovykh perekhodov i kriticheskikh svoistv modeli Geizenberga na ob'emno-tsentrirovannoi kubicheskoi reshetke”, Fizika tverdogo tela, 61:6 (2019), 1170–1174
[12] Peczak P., Ferrenberg A. M., Landau D. P., “High-accuracy Monte Carlo study of the three-dimensional classical Heisenberg ferromagnet”, Phys. Rev. B., 43:7 (1991), 522–526 | DOI
[13] Ramazanov M.K., Murtazaev A.K., “Fazovye perekhody v antiferromagnitnoi sloistoi modeli Izinga na kubicheskoi reshetke”, Pisma v ZhETF, 103:7 (2016), 522–526