Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2020_27_2_a3, author = {Ya. A. Loverov and Yu. L. Orlovich}, title = {NP-completeness of the independent dominating set problem in the class of cubic planar bipartite~graphs}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {65--89}, publisher = {mathdoc}, volume = {27}, number = {2}, year = {2020}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/DA_2020_27_2_a3/} }
TY - JOUR AU - Ya. A. Loverov AU - Yu. L. Orlovich TI - NP-completeness of the independent dominating set problem in the class of cubic planar bipartite~graphs JO - Diskretnyj analiz i issledovanie operacij PY - 2020 SP - 65 EP - 89 VL - 27 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/DA_2020_27_2_a3/ LA - ru ID - DA_2020_27_2_a3 ER -
%0 Journal Article %A Ya. A. Loverov %A Yu. L. Orlovich %T NP-completeness of the independent dominating set problem in the class of cubic planar bipartite~graphs %J Diskretnyj analiz i issledovanie operacij %D 2020 %P 65-89 %V 27 %N 2 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/DA_2020_27_2_a3/ %G ru %F DA_2020_27_2_a3
Ya. A. Loverov; Yu. L. Orlovich. NP-completeness of the independent dominating set problem in the class of cubic planar bipartite~graphs. Diskretnyj analiz i issledovanie operacij, Tome 27 (2020) no. 2, pp. 65-89. https://geodesic-test.mathdoc.fr/item/DA_2020_27_2_a3/
[1] Ore O., Theory of graphs, Amer. Math. Soc., Providence, RI, 1962, 284 pp. | MR | Zbl
[2] Cockayne E. J., Hedetniemi S. T., “Independence graphs”, Congr. Numerantium, 10 (1974), 471–491 | MR
[3] Sampathkumar E., Walikar H. B., “The connected domination number of a graph”, J. Math. Phys. Sci., 13 (1979), 607–613 | MR | Zbl
[4] Cockayne E. J., Dawes R. M., Hedetniemi S. T., “Total domination in graphs”, Networks, 10 (1980), 211–219 | DOI | MR | Zbl
[5] Bollobás B., Cockayne E. J., “Graph-theoretic parameters concerning domination, independence, and irredundance”, J. Graph Theory, 3:3 (1979), 241–249 | DOI | MR | Zbl
[6] Cockayne E. J., Hartnell B. L., Hedetniemi S. T., Laskar R., “Perfect domination in graphs”, J. Comb. Inf. Syst. Sci., 18 (1993), 136–148 | MR | Zbl
[7] Sampathkumar E., Neeralagi P. S., “The neighbourhood number of a graph”, Indian J. Pure Appl. Math., 16 (1985), 126–132 | MR | Zbl
[8] Sampathkumar E., Neeralagi P. S., “Independent, perfect and connected neighbourhood numbers of a graph”, J. Comb. Inf. Syst. Sci., 19 (1994), 139–145 | MR | Zbl
[9] Haynes T. W., Hedetniemi S. T., Slater P. J., Domination in graphs: Advanced topics, Marcel Dekker, New York, 1998, 520 pp. | MR | Zbl
[10] Haynes T. W., Hedetniemi S. T., Slater P. J., Fundamentals of domination in graphs, Marcel Dekker, New York, 1998, 457 pp. | MR | Zbl
[11] Du D.-Z., Wan P.-J., Connected dominating set: Theory and applications, Springer, New York, 2013, 216 pp. | MR | Zbl
[12] Goddard W., Henning M. A., “Independent domination in graphs: A survey and recent results”, Discrete Math., 313 (2013), 839–854 | DOI | MR | Zbl
[13] Henning M., Yeo A., Total domination in graphs, Springer, New York, 2013, 192 pp. | MR | Zbl
[14] Liu C.-H., Poon S.-H., Lin J.-Y., “Independent dominating set problem revisited”, Theor. Comput. Sci., 562 (2015), 1–22 | DOI | MR | Zbl
[15] Berge C., Graphs and hypergraphs, North-Holland, Amsterdam, 1973, 528 pp. | MR | Zbl
[16] Topp J., Domination, independence and irredundance in graphs, Diss. Math., 342, Inst. Mat. PAN, Warsaw, 1995, 98 pp. | MR
[17] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, San Francisco, 1979 | MR | Zbl
[18] Manlove D. F., “On the algorithmic complexity of twelve covering and independence parameters of graphs”, Discrete Appl. Math., 91 (1999), 155–175 | DOI | MR | Zbl
[19] V. A. Emelichev, O. I. Melnikov, V. I. Sarvanov, R. I. Tyshkevich, Lectures on Graph Theory, B. I. Wissenschaftsverlag, Mannheim, 1994 | MR | MR