Relationship between homogeneous bent~functions and Nagy graphs
Diskretnyj analiz i issledovanie operacij, Tome 26 (2019) no. 4, pp. 121-131.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the relationship between homogeneous bent functions and some intersection graphs of a special type that are called Nagy graphs and denoted by Γ(n,k). The graph Γ(n,k) is the graph whose vertices correspond to (nk) unordered subsets of size k of the set {1,,n}. Two vertices of Γ(n,k) are joined by an edge whenever the corresponding k-sets have exactly one common element. Those n and k for which the cliques of size k+1 are maximal in Γ(n,k) are identified. We obtain a formula for the number of cliques of size k+1 in Γ(n,k) for n=(k+1)k/2. We prove that homogeneous Boolean functions of 10 and 28 variables obtained by taking the complement to the cliques of maximal size in Γ(10,4) and Γ(28,7) respectively are not bent functions. Tab. 3, illustr. 2, bibliogr. 9.
Mots-clés : intersection graph, Nagy graph, homogeneous bent function, maximal clique.
@article{DA_2019_26_4_a6,
     author = {A. S. Shaporenko},
     title = {Relationship between homogeneous bent~functions and {Nagy} graphs},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {121--131},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {2019},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/DA_2019_26_4_a6/}
}
TY  - JOUR
AU  - A. S. Shaporenko
TI  - Relationship between homogeneous bent~functions and Nagy graphs
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2019
SP  - 121
EP  - 131
VL  - 26
IS  - 4
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/DA_2019_26_4_a6/
LA  - ru
ID  - DA_2019_26_4_a6
ER  - 
%0 Journal Article
%A A. S. Shaporenko
%T Relationship between homogeneous bent~functions and Nagy graphs
%J Diskretnyj analiz i issledovanie operacij
%D 2019
%P 121-131
%V 26
%N 4
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/DA_2019_26_4_a6/
%G ru
%F DA_2019_26_4_a6
A. S. Shaporenko. Relationship between homogeneous bent~functions and Nagy graphs. Diskretnyj analiz i issledovanie operacij, Tome 26 (2019) no. 4, pp. 121-131. https://geodesic-test.mathdoc.fr/item/DA_2019_26_4_a6/

[1] O. S. Rothaus, “On “bent” functions”, J. Comb. Theory., Ser. A, 20:3 (1976), 300–305 | DOI | MR | Zbl

[2] C. Qu, J. Seberry, J. Pieprzyk, “Homogeneous bent functions”, Discrete Appl. Math., 102:1-2 (2000), 133–139 | DOI | MR | Zbl

[3] C. Charnes, M. Rotteler, T. Beth, “Homogeneous bent functions, invariants, and designs”, Des., Codes Cryptogr., 26:1-2 (2002), 139–154 | DOI | MR | Zbl

[4] A. Bernasconi, B. Codenotti, “Spectral analysis of Boolean functions as a graph eigenvalue problem”, IEEE Trans. Comput., 48:3 (1999), 345–351 | DOI | MR | Zbl

[5] A. Bernasconi, B. Codenotti, J. M. Vanderkam, “A characterization of bent functions in terms of strongly regular graphs”, IEEE Trans. Comput., 50:9 (2001), 984–985 | DOI | MR | Zbl

[6] N. A. Kolomeec, “An upper bound for the number of bent functions at distance $2^k$ from an arbitrary bent function of 2k variables”, Prikl. Diskretn. Mat., 2014, no. 3, 28–39 (Russian)

[7] N. A. Kolomeec, “On connectivity of the minimal distance graph for the set of bent functions”, Prikl. Diskretn. Mat., Suppl., 2015, no. 8, 33–34 (Russian)

[8] E. P. Korsakova, “Some classification of the graphs for quadratic bent functions of 6 variables”, Diskretn. Anal. Issled. Oper., 20:5 (2013), 45–47 (Russian) | MR

[9] N. N. Tokareva, Bent functions: results and applications to cryptography, Acad. Press, Amsterdam, 2015, 220 pp. | MR | Zbl