Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2019_26_3_a2, author = {S. N. Selezneva}, title = {On $m$-junctive predicates on a finite set}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {46--59}, publisher = {mathdoc}, volume = {26}, number = {3}, year = {2019}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/DA_2019_26_3_a2/} }
S. N. Selezneva. On $m$-junctive predicates on a finite set. Diskretnyj analiz i issledovanie operacij, Tome 26 (2019) no. 3, pp. 46-59. https://geodesic-test.mathdoc.fr/item/DA_2019_26_3_a2/
[1] Jeavons P., Coher D., Gyssens M., “Closure properties of constraints”, J. ACM, 44 (1997), 527–548 | DOI | MR | Zbl
[2] Bulatov A., Jeavons P., Krokhin A., “Classifying the complexity of constraints using finite algebras”, SIAM J. Comput., 34:3 (2005), 720–742 | DOI | MR | Zbl
[3] Zhuk D., “An algorithm for constraint satisfaction problem”, Proc. IEEE 47th Int. Symp. Multiple-Valued Logic, 2017, 1–6 | MR
[4] Zhuk D., “A proof of CSP dichotomy conjecture”, Proc. IEEE 58th Annu. Symp. Foundations of Computer Science (Berkeley, CA), 2017, 331–342 | MR
[5] Bulatov A. A., “A dichotomy theorem for nonuniform CSPs”, Proc. IEEE 58th Annu. Symp. Foundations of Computer Science (Berkeley, CA), 2017, 319–330 | MR
[6] Schaefer T., “Complexity of satisfiability problems”, Proc. 10th ACM Symp. Theory of Computing, 1978, 216–226 | MR | Zbl
[7] Bulatov A. A., “A dichotomy theorem for constraint satisfaction problems on a 3-element set”, J. ACM, 53:1 (2006), 66–120 | DOI | MR | Zbl
[8] Jeavons P., Cohen D., Cooper M., “Constraints, consistency and closure”, Artif. Intell., 101:1–2 (1998), 251–265 | DOI | MR | Zbl
[9] Jeavons P. J., Cooper M. C., “Tractable constraints on ordered domains”, Artif. Intell., 79 (1995), 327–339 | DOI | MR | Zbl
[10] A. A. Bulatov, “The property of being polynomial for Mal'tsev constraint satisfaction problems”, Algebra Logic, 45 (2006), 371–388 | DOI | MR | Zbl
[11] S. N. Selezneva, “On bijunctive predicates over a finite set”, Discret. Math. Appl., 29 (2019), 49–58 | DOI | DOI | MR | MR | Zbl
[12] S. N. Selezneva, “On weak positive predicates over a finite set”, Diskretn. Mat., 30:3 (2018), 127–140 (Russian) | DOI | MR
[13] Dechter R., “From local to global consistency”, Artif. Intell., 55 (1992), 87–107 | DOI | MR | Zbl
[14] Cooper M. C., “An optimal $k$-consistency algorithm”, Artif. Intell., 41 (1989), 89–95 | DOI | MR | Zbl
[15] Lau D., Function algebras on finite sets, Springer, Berlin, 2006 | MR | Zbl