Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2019_26_1_a3, author = {A. V. Gubareva and A. A. Panin and A. V. Plyasunov and L. V. Som}, title = {On a three-level competitive pricing problem with uniform and mill pricing strategies}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {55--73}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {2019}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/DA_2019_26_1_a3/} }
TY - JOUR AU - A. V. Gubareva AU - A. A. Panin AU - A. V. Plyasunov AU - L. V. Som TI - On a three-level competitive pricing problem with uniform and mill pricing strategies JO - Diskretnyj analiz i issledovanie operacij PY - 2019 SP - 55 EP - 73 VL - 26 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/DA_2019_26_1_a3/ LA - ru ID - DA_2019_26_1_a3 ER -
%0 Journal Article %A A. V. Gubareva %A A. A. Panin %A A. V. Plyasunov %A L. V. Som %T On a three-level competitive pricing problem with uniform and mill pricing strategies %J Diskretnyj analiz i issledovanie operacij %D 2019 %P 55-73 %V 26 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/DA_2019_26_1_a3/ %G ru %F DA_2019_26_1_a3
A. V. Gubareva; A. A. Panin; A. V. Plyasunov; L. V. Som. On a three-level competitive pricing problem with uniform and mill pricing strategies. Diskretnyj analiz i issledovanie operacij, Tome 26 (2019) no. 1, pp. 55-73. https://geodesic-test.mathdoc.fr/item/DA_2019_26_1_a3/
[1] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, San Francisco, 1979 | MR | Zbl
[2] A. V. Plyasunov, A. A. Panin, “The pricing problem. Part I: Exact and approximate algorithm”, J. Appl. Ind. Math., 7:2 (2013), 241–251 | DOI | MR | Zbl
[3] A. V. Plyasunov, A. A. Panin, “The pricing problem. Part II: Computational complexity”, J. Appl. Ind. Math., 7:3 (2013), 420–430 | DOI | MR | Zbl
[4] Ausiello G., Crescenzi P., Gambosi G., Kann V., Marchetti-Spaccamela A., Protasi M., Complexity and approximation: Combinatorial optimization problems and their approximability properties, Springer-Verl., Heidelberg, 1999, 524 pp. | MR | Zbl
[5] Florensa C., Garcia-Herreros P., Misra P., Arslan E., Mehta S., Grossmann I. E., “Capacity planning with competitive decision-makers: Trilevel MILP formulation, degeneracy, and solution approaches”, Eur. J. Oper. Res., 262:2 (2017), 449–463 | DOI | MR | Zbl
[6] Geoffrion A. M., “Generalized Benders decomposition”, J. Optim. Theory Appl. 1972, 10:4, 237–260 | DOI | MR | Zbl
[7] Hansen P., Mladenovic N., “Variable neighborhood search”, Eur. J. Oper. Res. 2001, 130:3, 449–467 | DOI | MR | Zbl
[8] Leggette E. W., Jr., Moore D. J., “Optimization problems and the polynomial hierarchy”, Theor. Comput. Sci. 1981, 15:3, 279–289 | MR
[9] McDaniel D., Devine M., “A modified Benders partitioning algorithm for mixed integer programming”, Manage. Sci., 24:3 (1977), 312–319 | DOI | Zbl
[10] Outrata J. V., “On the numerical solution of a class of Stackelberg problems”, ZOR, 34:4 (1990), 255–277 | MR | Zbl
[11] Plyasunov A. V., Panin A. A., “On three-level problem of competitive pricing”, Proc. 2nd Int. Conf. Numerical Computations: Theory and Algorithms, NUMTA-2016 (Pizzo Calabro, Italy, June 19–25, 2016), AIP Conf. Proc., 1776, AIP Publ., Melville, NY, 2016, 050007, 5 pp. | DOI
[12] Vanderbeck F., Savelsbergh M. W. P., “A generic view of Dantzig–Wolfe decomposition for integer programming”, Oper. Res. Lett. 2006, 34:3, 296–306 | DOI | MR | Zbl