On a three-level competitive pricing problem with uniform and mill pricing strategies
Diskretnyj analiz i issledovanie operacij, Tome 26 (2019) no. 1, pp. 55-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under study is a three-level pricing problem formulated as a Stackelberg game in which the two companies, the Leader and the Follower, compete with each other for customers demand by setting prices for homogeneous products on their facilities. The first decision is made by the Leader. Then, having full information about the Leader's choice, the Follower makes his own decision. After that each customer chooses the facility with minimal service costs to be serviced from. The Leader and the Follower use different pricing strategies: uniform and mill pricing respectively. We study the behavior of company revenues depending on the number of facilities. For this, an exact decomposition type algorithm is proposed. Moreover, we developed a hybrid approximation algorithm that is based on the variable neighborhood descent and coordinate descent. Tab. 2, bibliogr. 12.
Mots-clés : Stackelberg game, competitive pricing problem, three-level problem, uniform and mill pricing, exact and approximate algorithm, variable neighborhood descent, coordinate descent, decomposition.
@article{DA_2019_26_1_a3,
     author = {A. V. Gubareva and A. A. Panin and A. V. Plyasunov and L. V. Som},
     title = {On a three-level competitive pricing problem with uniform and mill pricing strategies},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {55--73},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2019},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/DA_2019_26_1_a3/}
}
TY  - JOUR
AU  - A. V. Gubareva
AU  - A. A. Panin
AU  - A. V. Plyasunov
AU  - L. V. Som
TI  - On a three-level competitive pricing problem with uniform and mill pricing strategies
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2019
SP  - 55
EP  - 73
VL  - 26
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/DA_2019_26_1_a3/
LA  - ru
ID  - DA_2019_26_1_a3
ER  - 
%0 Journal Article
%A A. V. Gubareva
%A A. A. Panin
%A A. V. Plyasunov
%A L. V. Som
%T On a three-level competitive pricing problem with uniform and mill pricing strategies
%J Diskretnyj analiz i issledovanie operacij
%D 2019
%P 55-73
%V 26
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/DA_2019_26_1_a3/
%G ru
%F DA_2019_26_1_a3
A. V. Gubareva; A. A. Panin; A. V. Plyasunov; L. V. Som. On a three-level competitive pricing problem with uniform and mill pricing strategies. Diskretnyj analiz i issledovanie operacij, Tome 26 (2019) no. 1, pp. 55-73. https://geodesic-test.mathdoc.fr/item/DA_2019_26_1_a3/

[1] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, San Francisco, 1979 | MR | Zbl

[2] A. V. Plyasunov, A. A. Panin, “The pricing problem. Part I: Exact and approximate algorithm”, J. Appl. Ind. Math., 7:2 (2013), 241–251 | DOI | MR | Zbl

[3] A. V. Plyasunov, A. A. Panin, “The pricing problem. Part II: Computational complexity”, J. Appl. Ind. Math., 7:3 (2013), 420–430 | DOI | MR | Zbl

[4] Ausiello G., Crescenzi P., Gambosi G., Kann V., Marchetti-Spaccamela A., Protasi M., Complexity and approximation: Combinatorial optimization problems and their approximability properties, Springer-Verl., Heidelberg, 1999, 524 pp. | MR | Zbl

[5] Florensa C., Garcia-Herreros P., Misra P., Arslan E., Mehta S., Grossmann I. E., “Capacity planning with competitive decision-makers: Trilevel MILP formulation, degeneracy, and solution approaches”, Eur. J. Oper. Res., 262:2 (2017), 449–463 | DOI | MR | Zbl

[6] Geoffrion A. M., “Generalized Benders decomposition”, J. Optim. Theory Appl. 1972, 10:4, 237–260 | DOI | MR | Zbl

[7] Hansen P., Mladenovic N., “Variable neighborhood search”, Eur. J. Oper. Res. 2001, 130:3, 449–467 | DOI | MR | Zbl

[8] Leggette E. W., Jr., Moore D. J., “Optimization problems and the polynomial hierarchy”, Theor. Comput. Sci. 1981, 15:3, 279–289 | MR

[9] McDaniel D., Devine M., “A modified Benders partitioning algorithm for mixed integer programming”, Manage. Sci., 24:3 (1977), 312–319 | DOI | Zbl

[10] Outrata J. V., “On the numerical solution of a class of Stackelberg problems”, ZOR, 34:4 (1990), 255–277 | MR | Zbl

[11] Plyasunov A. V., Panin A. A., “On three-level problem of competitive pricing”, Proc. 2nd Int. Conf. Numerical Computations: Theory and Algorithms, NUMTA-2016 (Pizzo Calabro, Italy, June 19–25, 2016), AIP Conf. Proc., 1776, AIP Publ., Melville, NY, 2016, 050007, 5 pp. | DOI

[12] Vanderbeck F., Savelsbergh M. W. P., “A generic view of Dantzig–Wolfe decomposition for integer programming”, Oper. Res. Lett. 2006, 34:3, 296–306 | DOI | MR | Zbl