Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2019_26_1_a2, author = {Sh. I. Galiev and A. V. Khorkov}, title = {On the number and arrangement of sensors for~the~multiple covering of bounded plane~domains}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {33--54}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {2019}, language = {ru}, url = {https://geodesic-test.mathdoc.fr/item/DA_2019_26_1_a2/} }
TY - JOUR AU - Sh. I. Galiev AU - A. V. Khorkov TI - On the number and arrangement of sensors for~the~multiple covering of bounded plane~domains JO - Diskretnyj analiz i issledovanie operacij PY - 2019 SP - 33 EP - 54 VL - 26 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/DA_2019_26_1_a2/ LA - ru ID - DA_2019_26_1_a2 ER -
%0 Journal Article %A Sh. I. Galiev %A A. V. Khorkov %T On the number and arrangement of sensors for~the~multiple covering of bounded plane~domains %J Diskretnyj analiz i issledovanie operacij %D 2019 %P 33-54 %V 26 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/DA_2019_26_1_a2/ %G ru %F DA_2019_26_1_a2
Sh. I. Galiev; A. V. Khorkov. On the number and arrangement of sensors for~the~multiple covering of bounded plane~domains. Diskretnyj analiz i issledovanie operacij, Tome 26 (2019) no. 1, pp. 33-54. https://geodesic-test.mathdoc.fr/item/DA_2019_26_1_a2/
[1] T. A. Aldyn-ool, A. I. Erzin, V. V. Zalyubovskiy, “The coverage of a planar region by randomly deployed sensors”, Vestn. NGU, Ser. Mat. Mekh. Inform., 10:4 (2010), 7–25 (Russian) | Zbl
[2] S. N. Astrakov, A. I. Erzin, “Construction of efficient covering models in the monitoring of extended objects”, Vychisl. Tekhnol., 17:1 (2010), 26–34 (Russian)
[3] V. S. Brusov, S. A. Piyavskii, “A computational algorithm for optimally covering a plane region”, USSR Comput. Math. Math. Phys., 11:2 (1971), 17–27 | DOI
[4] Sh. I. Galiev, M. A. Karpova, “Optimization of multiple covering of a bounded set with circles”, Comput. Math. Math. Phys., 50:4 (2010), 721–732 | DOI | MR | Zbl
[5] Sh. I. Galiev, A. V. Khorkov, “Multiple circle coverings of an equilateral triangle, square, and circle”, Diskretn. Anal. Issled. Oper., 22:6 (2015), 5–28 (Russian) | MR | Zbl
[6] A. V. Eremeev, L. A. Zaozerskaya, A. A. Kolokolov, “The set covering problem: Complexity, algorithms, and experimental investigations”, Diskretn. Anal. Issled. Oper., Ser. 2, 7:2 (2009), 22–46 (Russian) | MR
[7] N. N. Kuzyurin, “On the complexity of asymptotically optimal coverings and packing”, Dokl. Math., 58:3 (1998), 345–346 | MR | Zbl
[8] I. Kh. Sigal, A. P. Ivanova, Introduction to Applied Discrete Programming: Models and Computational Algorithm, Fizmatlit, M., 2002 (Russian)
[9] M. Yu. Khachai, M. I. Poberii, “Computational complexity and approximability of a series of geometric covering problems”, Proc. Steklov Inst. Math., 284, Suppl. 1 (2014), S87–S95 | MR | Zbl
[10] Ammari H. M., Challenges and opportunities of connected $k$-covered wireless sensor networks, Spinger-Verl., Berlin–Heidelberg, 2009, 342 | MR
[11] Andersen T., Tirthapura S., “Wireless sensor deployment for 3D coverage with constraints”, Proc. 6th Int. Conf. Networked Sensing Systems (Pittsburg, 2009), 78–81
[12] Astrakov S. N., “Coverings of sets with restrictions on the arrangement of circles”, Proc. VIII Int. Conf. Optimization and Applications, OPTIMA-2017 (Petrovac, Montenegro), 2017, 67–72 www.ceur-ws.org
[13] Aziz N. A. A., Aziz K. A., Ismail W. Z. W., “Coverage strategies for wireless sensor networks”, World Acad. Sci., Eng. Technology Int. J. Electron. Commun. Eng., 3:2 (2009), 145–159
[14] Bertsimas. D., Vohra. R., “Rounding algorithms for covering problems”, Math. Program., 80 (1998), 63–89 | MR | Zbl
[15] Caprara A., Fischetti M., Tóth P., “A heuristic method for the set covering problem”, Oper. Res., 47 (1999), 730–743 | DOI | MR | Zbl
[16] Erzin A., Astrakov S., “Min-density stripe covering and applications in sensor networks”, Lect. Notes Comput. Sci., 6784, 2011, 152–162 | DOI | MR
[17] Fejes Tóth G., “Multiple packing and covering of the plane with circles”, Acta Math. Acad. Sci. Hungar., 27:1–2 (1976), 135–140 | DOI | MR | Zbl
[18] Fejes Tóth G., “Thinnest covering of circle by eight, nine and ten congruent circles”, Comb. Comput. Geom., 52 (2005), 361–376 | MR | Zbl
[19] Galiev Sh. I., Lisafina M. S., “Linear models for the approximate solution of the problem of packing equal circles into a given domain”, Eur. J. Oper. Res., 230 (2013), 505–514 | DOI | MR | Zbl
[20] Garey M. R., Jonson D. S., “Computers and intractability”, A guide to the theory of NP-completeness, W. H. Freeman, San Francisco, 1979 | MR | Zbl
[21] Hall N., Hochbaum D. A., “A fast approximation algorithm for the multicovering problem”, Discrete Appl. Math., 15 (1989), 35–40 | DOI | MR
[22] Hawbani A., Wang X. F., Husaini N., Karmoshi S., “Grid coverage algorithm analysis for wireless sensor networks”, Netw. Protocols Algorithms, 6:4 (2014), 65–81
[23] Heppes A., Melissen H., “Covering a rectangle with equal circles”, Period. Math. Hungar., 34 (1997), 65–81 | DOI | MR | Zbl
[24] Hochbaum D. S., Maass W., “Approximation schemes for covering and packing problems in image processing and vlsi”, J. ACM, 32:1 (1985), 130–136 | DOI | MR | Zbl
[25] Huang C. F., Tseng Y. C., “A survey of solutions to the coverage problems in wireless sensor networks”, J. Internet Technology, 6:1 (2005), 1–8
[26] Kim J. E., Han J., Lee C. G., “Optimal 3-coverage with minimum separation requirements for ubiquitous computing environments”, Mobile Netw. Appl., 2009, 556–570 | DOI
[27] Krotoszynski S., “Covering a disk with smaller disks”, Studia Sci. Math. Hungar., 28:3–4 (1993), 277–283 | MR | Zbl
[28] Kumar S., Lai T. H., Balogh J., “On $k$-coverage in a mostly sleeping sensor network”, Proc. ACM MobiCom., 2004, 144–158
[29] Megiddo N., “On the complexity of some common geometric location problems”, SIAM J. Comput., 13 (1984), 182–196 | DOI | MR | Zbl
[30] Melissen J. B. M., “Loosest circle coverings of an equilateral triangle”, Math. Mag., 70 (1997), 119–125 | DOI | MR
[31] Melissen J. B. M., Schuur P. C., “Improved coverings of a square with six and eight equal circles”, Electron. J. Comb., 3:R32 (1996), 10 | MR | Zbl
[32] Melissen J. B. M., Schuur P. C., “Covering a rectangle with six and seven circles”, Discrete Appl. Math., 99 (2000), 149–156 | DOI | MR | Zbl
[33] Nurmella K. J., Covering a circle by congruent circular discs, Preprint, Departament of Computer Sciences and Engineering. Helsinki Univ. Technology, 1998
[34] Nurmella K. J., “Conjecturally optimal coverings of an equilateral triangle with up to 36 equal circles”, Exp. Math., 9 (2000), 241–250 | DOI | MR
[35] Nurmella K. J., Östergard P. R. J., Covering a square with up to 30 equal circles, Res. Rep. A62, Lab. Technology Helsinki Univ., 2000 www.tcs.hut.fi/Publications/reports | MR
[36] Suzuki A., Drezner Z., “The minimum number equitable radius location problems with continuous domain”, Eur. J. Oper. Res., 2009, 17–30 | DOI | MR | Zbl
[37] Tabirca T., Yang L. T., Tabirca S., “Smallest number of sensors for $k$-covering”, Int. J. Comput. Commun., 8 (2013), 312–319 | DOI
[38] Tarnai T., Gáspár Zs., “Covering a square by equal circles”, Elem. Math., 50 (1995), 167–170 | MR | Zbl
[39] Umetani S., Yagiura M., “Relaxation heuristics for the set covering problem”, J. Oper. Res. Soci. Jap., 50:4 (2007), 350–375 | MR | Zbl
[40] Wang B., “Coverage problems in sensor networks: a survey”, J. ACM Comput. Surv. (CSUR), 43 (2011), 167–170
[41] Yang S., Dai F., Cardei M., Wu J., “On connected multiple point coverage in wireless sensor networks”, Int. J. Wireless Inform. Netw., 13:4 (2006), 289–301 | DOI
[42] Yeasmin N., “$k$-Coverage problems and solutions in wireless sensor networks: a survey”, Int. Jo. Comput. Appl., 100:17 (2014), 1–6