Stability aspects of multicriteria integer~linear~programming problems
Diskretnyj analiz i issledovanie operacij, Tome 26 (2019) no. 1, pp. 5-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under consideration are the multicriteria integer linear programming problems with finitely many feasible solutions. The problem itself consists in finding a set of extremal solutions. We derive some lower and upper bounds for the T1-stability radius under assumption that arbitrary Hölder norms are given in the solution and criteria spaces. A class of the problems with an infinitely large stability radius is specified. We also consider the case of the multicriteria linear Boolean problem. Bibliogr. 22.
Mots-clés : multicriteria ILP problem, set of extremal solutions, stability radius, T1-stability, the Hölder norm.
@article{DA_2019_26_1_a0,
     author = {S. E. Bukhtoyarov and V. A. Emelichev},
     title = {Stability aspects of multicriteria integer~linear~programming problems},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {5--19},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2019},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/DA_2019_26_1_a0/}
}
TY  - JOUR
AU  - S. E. Bukhtoyarov
AU  - V. A. Emelichev
TI  - Stability aspects of multicriteria integer~linear~programming problems
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2019
SP  - 5
EP  - 19
VL  - 26
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/DA_2019_26_1_a0/
LA  - ru
ID  - DA_2019_26_1_a0
ER  - 
%0 Journal Article
%A S. E. Bukhtoyarov
%A V. A. Emelichev
%T Stability aspects of multicriteria integer~linear~programming problems
%J Diskretnyj analiz i issledovanie operacij
%D 2019
%P 5-19
%V 26
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/DA_2019_26_1_a0/
%G ru
%F DA_2019_26_1_a0
S. E. Bukhtoyarov; V. A. Emelichev. Stability aspects of multicriteria integer~linear~programming problems. Diskretnyj analiz i issledovanie operacij, Tome 26 (2019) no. 1, pp. 5-19. https://geodesic-test.mathdoc.fr/item/DA_2019_26_1_a0/

[1] M. A. Aizerman, F. T. Alekserov, The Alternative Choice: Theoretical Foundations, Nauka, M., 1990 (Russian) | MR

[2] S. E. Bukhtoyarov, V. A. Emelichev, “On the stability measure of solutions to a vector variant of an investment problem”, Appl. Ind. Math., 9:3 (2015), 328–334 | DOI | MR | Zbl

[3] S. E. Bukhtoyarov, V. A. Emelichev, “On a stability type of an integer linear programming problem with several criteria”, Proc. 8th Int. Conf. “Tanaevskie chteniya” (Minsk, Belarus, Mar. 27–30, 2018), OIPI NAN Belarusi, Minsk, 2018, 48–51 (Russian)

[4] E. N. Gordeev, “Comparison of three approaches to studying stability of solutions to problems of discrete optimization and computational geometry”, Appl. Ind. Math., 9:3 (2015), 358–366 | DOI | MR | Zbl

[5] V. A. Emelichev, V. V. Korotkov, “On stability of a vector Boolean investment problem with Wald's criteria”, Discrete Math. Appl., 22:4 (2012), 367–381 | DOI | DOI | MR | Zbl

[6] V. A. Emelichev, V. M. Kotov, K. G. Kuzmin, T. T. Lebedeva, N. V. Semenova, T. I. Sergienko, “Stability and effective algorithms for solving multiobjective discrete optimization problems with incomplete information”, J. Autom. Inf. Sci., 46:2 (2014), 27–41 | DOI

[7] V. A. Emelichev, K. G. Kuzmin, “On a type of stability of a milticriteria integer linear programming problem in the case of a monotone norm”, J. Comput. Syst. Sci. Int., 46:5 (2007), 714–720 | DOI | MR

[8] V. A. Emelichev, K. G. Kuzmin, “A general approach to studying the stability of a Pareto optimal solutions of a vector integer linear programming problem”, Discrete Math. Appl., 17:4 (2007), 349–354 | DOI | DOI | MR | Zbl

[9] V. A. Emelichev, K. G. Kuzmin, “Stability radius of a vector integer linear programming problem: Case of a regular norm in the space of criteria”, Cybern. Syst. Anal., 46:1 (2010), 72–79 | DOI | MR | Zbl

[10] V. A. Emelichev, K. G. Kuzmin, “Stability analysis of the effective solution to the vector problem on the maximal cut of a graph”, Diskretn. Anal. Issled. Oper., 20:4 (2013), 27–35 (Russian) | Zbl

[11] V. A. Emelichev, K. G. Kuzmin, “On the $T_1$-stability radius of a multicriteria linear Boolean problem with Hölder norms in parameter spaces”, Tavricheskiy Vestn. Mat. Inform., 30:1 (2016), 49–64 (Russian)

[12] V. A. Emelichev, D. P. Podkopaev Stability and regularization of vector integer programs, Diskretn. Anal. Issled. Oper., Ser. 2, 8:1 (2001), 47–69 (Russian) | Zbl

[13] K. G. Kuzmin, “A general approach to the calculation of stability radii for the max-cut problem with multiple criteria”, Appl. Ind. Math., 9:4 (2015), 527–539 | DOI | MR | Zbl

[14] V. K. Leontiev, “Stability in linear discrete problems”, Problems of Cybernetics, 35, Nauka, M., 1979, 169–184 (Russian) | Zbl

[15] A. V. Lotov, I. I. Pospelova, Multicriteria Decision-Making Problems, MAKS Press, M., 2008 (Russian)

[16] V. V. Podinovski, V. D. Nogin, Pareto-Optimal Solutions to Multicriteria Problems, Fizmatlit, M., 2007 (Russian)

[17] I. V. Sergienko, V. P. Shilo, Discrete Optimization Problems: Problems, Solution Methods, Research, Naukova dumka, Kiev, 2003 (Russian)

[18] L. A. Sholomov, Logical Methods for Investigation of Discrete Choice Models, Nauka, M., 1989 (Russian)

[19] D. B. Yudin, Computational Methods in Decision-Making Theory, Nauka, M., 1989 (Russian)

[20] Emelichev V. A., Bukhtoyarov S. E., Mychkov V. I., “An investment problem under multicriteriality, uncertainty and risk”, Bul. Acad. Stiinte Repub. Mold., Mat., 2016, no. 3, 82–98 | MR | Zbl

[21] Emelichev V. A., Girlich E., Nikulin Yu. V., Podkopaev D. P., “Stability and regularization of vector problem of integer linear programming”, Optimization, 51:4 (2002), 645–676 | DOI | MR | Zbl

[22] Emelichev V. A., Podkopaev D. P., “Quantitative stability analysis for vector problems of 0–1 programming”, Discrete Optim., 7:1–2 (2010), 48–63 | DOI | MR | Zbl